
End-User Mashup Programming: Through the Design Lens
Jill Cao1, Yann Riche2, Susan Wiedenbeck3, Margaret Burnett1, Valentina Grigoreanu1,4

1Oregon State University
Corvallis, OR

{caoch,burnett}@eecs.oregonstate.edu

2Riche Design
Seattle, WA

yann@yannriche.net

3Drexel University
Philadelphia, PA
sw53@drexel.edu

4Microsoft Corporation
Redmond, WA

valeng@microsoft.com

ABSTRACT
Programming has recently become more common among
ordinary end users of computer systems. We believe that
these end-user programmers are not just coders but also
designers, in that they interlace making design decisions
with coding rather than treating them as two separate phas-
es. To better understand and provide support for the pro-
gramming and design needs of end users, we propose a de-
sign theory-based approach to look at end-user program-
ming. Toward this end, we conducted a think-aloud study
with ten end users creating a web mashup. By analyzing
users’ verbal and behavioral data using Schön’s reflection-
in-action design model and the notion of ideations from
creativity literature, we discovered insights into end-user
programmers’ problem-solving attempts, successes, and
obstacles, with accompanying implications for the design of
end-user programming environments for mashups. The con-
tribution of our work is three-fold: 1) the methodology of
using a design lens to view programming, 2) evidence,
through insights gained, of the usefulness of this approach,
and 3) the implications themselves.

Author Keywords
End-User Programming, Design, Mashups

ACM Classification Keywords
D.2.6 [Software Engineering]: Programming Environ-
ments—Interactive environments, D.2.10 [Software Engi-
neering]: Design.

General Terms
Human Factors, Design

INTRODUCTION
(Overheard in a lunchroom): “Hi Mike, I liked your Venn
Diagram design.”

Mike is a professional software developer. As the conversa-
tion continued, it quickly became clear that his Venn Dia-
gram design was something that emerged while he was
programming—there was never any exit from the pro-
gramming activity to engage in something most people
would recognize as a design activity. Yet, the software de-
velopers at the table consistently referred to the result as a
“design”. Further, as his process was dissected, it was re-

vealed to be an iteration through design possibilities, expe-
rimentation, and evaluation—in short, the steps identified in
the literature as being the components of design.

So, what counts as design? Traditionally, design in software
engineering has been considered as a front-end process fol-
lowed by implementation. As such, the devising of a solu-
tion and its implementation were considered to be separate
and sequential processes. This view has been continuously
challenged by psychologists studying programming activi-
ties [31]. In particular, Gray and Anderson referred to de-
sign cycles that contained not just the traditional view of
design as up-front planning, but also translating the abstract
solution to implementation and then revising the implemen-
tation and/or one’s understanding of the solution [8].

Recently, the software engineering community has adopted
development methodologies that iterate between design and
coding. Examples include agile development, Rational Uni-
fied Process, and the spiral model [28]. However, within
these methodologies, design and implementation activities
are still considered as separate, albeit iterative and convers-
ing, phases of the software process.

We believe that what is seen as just coding from the view of
traditional software engineering in fact is peppered at the
microlevel with design decisions and, as such, much of it
can be viewed as designing. We believe this is true not only
of professional developers like Mike, but also of end-user
programmers.

Nardi defined end-user programmers as being distinct from
professional developers in that end users’ programs are not
the end in itself, but rather a means to accomplish their own
tasks or hobbies [20]. End-user programmers often do not
have professional computer science training, and there are a
variety of research systems and tools aimed at this au-
dience; examples include an accountant creating spread-
sheet formulas (which are computation instructions) to keep
track of a budget in Excel or a web-literate end user build-
ing a quick mashup to facilitate the planning of a night at
the movies.

To investigate the role and impact of tiny instances of de-
sign that permeate the programming process, especially by
end-user programmers, we adopted a design lens through
which to view the activities of ten end-user programmers
creating a web mashup. Our hope was that this investigation
would demonstrate this approach’s ability to shed critical
insights on end-user programming. Thus, our research ques-
tions were:

Permission to make digital or hard copies of all or part of this work for Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1009

RQ1: Can we describe end users’ programming behaviors
using theories and findings from design?

RQ2: Is doing so beneficial? For example, what implica-
tions for tool design can we discover?

We use these questions to explore a methodology for apply-
ing design perspectives to programming. We then present
evidence, through insights gained, of the usefulness of us-
ing this methodology. Finally, along with the insights them-
selves into end-user programmers’ problem-solving at-
tempts, successes, and obstacles, we present associated im-
plications for the design of end-user programming envi-
ronments for mashups.

BACKGROUND, THEORIES AND RELATED WORK

Theoretical and Empirical Background
In the design community, Schön’s reflection-in-action is an
important design model that describes practitioners’ ways
of approaching ill-defined problems [26]. The process has
three phases. Framing involves understanding and defining
the problem. Acting aims to transform the current situation
to a better one, or to learn more about the situation. Reflect-
ing looks back on actions to assess their consequences and
implications. The process is an iterative “conversation”
[26], with moves from framing to acting to reflecting, and
sometimes back to major reframing.

When designers, professional or not, sit down to create a
design, they are likely not looking for repetition but for
expressions of creativity. The creativity community has
evolved theory and associated concepts that point to crea-
tivity, namely the three concepts of ideational fluency, flex-
ibility, and elaboration. The literature has long argued for
quantity of ideas as an indicator for creativity [5, 10]. Guil-
ford introduced the concept of ideational fluency, i.e., the
rate of generating ideas related to the creative output. Em-
pirical evidence supports the construct validity of using
ideational output as a measure for quality of responses [18].
Flexibility is defined as generating different types of ideas
[10, 25]. Flexibility can be recognized when an individual
moves from one ideational category to another [25]. Elabo-
ration is described as the ability to extend basic information
to a rich web of information [10]. In our study, we relate
our findings to these three concepts.

Related Work
Research shows that professional software developers take
different paths in the early stages of a design process [11].
One path is to fully specify the design problem early on. In
this top-down, breadth-first approach each successive level
of the decomposition is more detailed. The refinement
process continues until the problem is fully specified. This
approach is successful if the problem is well structured,
with well-defined goals, knowledge of the domain, and no
novelty in the problem. Lacking these characteristics, the
alternative path is opportunistic decomposition, in which
the software developer jumps into the design using a data-
driven approach. Empirical studies, e.g., [11, 30], show that
ill-structured problems lead to changes in high-level goals

and new requirements. Thus, they come to the conclusion
that the software design process should be opportunistic in
these cases. Opportunism also appears in novice program-
mers’ behavior. Studies show that novices designing a pro-
gram will initially attempt to use top-down design, but it
often fails because the programmers do not have the ability
to decompose the problem, nor do they have stored plans to
build on [13, 21]. Consequently, they start writing code
without a plan, resulting in a bottom-up design. While the
studies above involved professional developers’ and novice
programmers’ approaches, our study gives us a chance to
see those of end-user programmers.

Professional developers may prefer to specify the design
problem early, but like novice programmers, end users of-
ten go directly to programming, grabbing opportunities as
they arise. This lack of design planning is reminiscent of
“debugging into existence” [22], i.e., ignoring analysis and
incrementally developing a small part of the system then
iteratively using the debugger to refine and correct prob-
lems. However, recent research suggests that design plan-
ning by end users is feasible. In an exploratory study [23],
end-user web developers successfully carried out a design
planning task before developing the application, and this
was reflected in the implementation. Our work differed
from [23] in that we did not prescribe design planning me-
thods to participants but rather let them work however they
preferred.

The work of Kannengiesser and Zhu [15] applied the func-
tion-behavior-structure (FBS) design model to various
software design methods, e.g., the Rational Unified Process.
The aim of this work was to develop a basis for empirical
investigations of software design processes using the FBS
model. Our work differs from theirs in several ways: we
applied Schön’s reflection-in-action model instead of the
FBS model because it is suitable for describing practition-
ers’ behaviors, our participants were end users rather than
professional software developers, and our study was empir-
ical instead of analytical.

EMPIRICAL STUDY
To see if we could apply design-related theories and find-
ings to describe end users’ programming activities, and to
find out the benefits of doing so, we observed ten partici-
pants engaging in an end-user programming task, i.e., creat-
ing mashups. Mashups are web applications that interac-
tively combine data from multiple internet sources [32]. We
chose mashups because it is an emerging end-user pro-
gramming paradigm. To achieve this task, participants used
an online visual programming environment called Micro-
soft Popfly Mashup Creator. (Microsoft stopped supporting
Popfly on August 24, 2009.)

Participants and Procedure
This study included four female and six male college stu-
dents from a wide variety of majors (e.g., biology, nutrition
science). None were computer science students or had taken
computer science courses beyond the elementary level. One
female and four males had past programming experience

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1010

either in high school, college, or both (one male had one
course; the rest had two). All participants were comfortable
with web browsing.

We used the think-aloud approach, conducting the study
with one participant at a time. Participants first filled out a
background questionnaire and worked on a hands-on tutori-
al in which they were allowed to ask questions (see Tuto-
rials and Task). They then completed a self-efficacy ques-
tionnaire adapted from [6] to the specific task of end-user
mashup creation. We collected self-efficacy scores because
self-efficacy has previously been found to impact end users’
approaches to programming tasks [3, 4, 9]. Participants then
practiced the think-aloud procedure before proceeding to
the main task. When participants stopped making progress,
the researcher administered an additional mini-tutorial to
help them (see Tutorials and Task). The data we collected
included a video capture of participants’ interactions with
the environment (including their facial expressions), and
participants’ final mashups.

Environment
In Popfly, users build mashups using basic programming
constructs called blocks. Each block performs a set of oper-
ations such as data retrieval and data display. Each opera-
tion takes input parameters to allow customization. Blocks
are connected to form a network in which the output of a
block can be used as input for adjacent blocks. Figure 1
shows a mashup example in which the Flickr block sends a
list of images about “beaches” with their geographical
coordinates to the Virtual Earth block (Figure 1: top and
middle) to display them on a map (Figure 1: bottom). In
Popfly, blocks are listed in different categories, which users
can search. Additionally, users may share their mashups
with others for reuse and modifications. Shared mashups
can be retrieved using a textual search.

Tutorials and Task
The pre-task 20-minute tutorial provided participants with
an introduction to mashups, and included two live examples
of mashups before a short hands-on session. The hands-on
session familiarized users with Popfly’s basic features, how
to search and modify other people’s mashups, and the help
feature. Figure 1 shows the mashup participants created
during the tutorial.

During the task, participants who had not made progress for
15 consecutive minutes received an additional 5-minute
tutorial to help them regain productivity. The tutorial con-
sisted of creating two mini mashups. The decision on deli-
vering this tutorial was based on the participants’ demon-
strating difficulty in generating new ideas to approach the
task. Although the mid-task tutorial may have influenced
participants’ behaviors, we compare its effect to encounter-
ing a well-chosen example. The mid-task tutorial was given
to half of the participants (two males and three females).

The task involved creating a mashup about movies shown
in a city. Paper, pens and sticky notes were provided. The
mashup required the following pieces of information: 1) a
list of local theaters, 2) movies shown at each theater along
with information, e.g., running and show times, 3) a picture,
and 4) a news story for each movie. Prior to the study, we
refined the experimental setup and the task with pilot runs.

METHODOLOGY
We coded the study’s transcript with three code sets (Table
1): reflection-in-action [26] commonly used for studying
design activities [2], ideations devised based on creativity
literature [10], and barriers developed for the analysis of
end-user programming [16].

For reflection-in-action, we used one code for each of the
three steps in the reflection-in-action theory. Framing de-
scribed events in which participants tried to understand and
define the problem, either by generating a hypothesis to
explore, or by gathering information to narrow down the
design space. Acting described events in which participants
started or changed their mashups. Reflecting described
events in which participants evaluated their actions. Table 1
shows examples of each.

We built upon Guilford’s notion of “ideational fluency” to
create the ideations codes. As mentioned in the Background
section, ideational fluency refers to rate of generating ideas
[10]. To account for this notion, we coded expansions and
contractions of the participant’s working set of major ideas.
Expansion describes a new idea to solve the problem, or the
elaboration of an existing idea. In contrast, contraction is
the abandonment of an existing idea. In our analysis, we
only coded expansion/contraction if there was unambiguous
evidence of an idea addition/deletion through their verbali-
zation or action. As a result, this code set mainly expresses
how ideation processes were reflected by actions carried out
in the workspace. Finally, we coded five of Ko et al.’s pro-
gramming barriers from the end-user programming litera-
ture [16] (see Table 1).

Figure 1. The pre-task tutorial example mashup in Popfly
Mashup Creator. Top: the blocks. Middle: some of the

blocks’ settings. Bottom: results generated by pressing the
Run button (not shown).

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1011

For each code set, two researchers coded small portions of
the transcripts independently and compared inter-coder
agreement until they reached an 80% agreement covering at
least 20% of the transcripts. Researchers then split up the
remaining work and coded independently.

RESULTS
In existing environments for end-user programming such as
the emerging ones for building mashups, there is no support
for phases other than implementation. Thus, any designing
that takes place occurs in the context of implementing and
evaluating a program. To study the consequences of this
attribute of end-user programming environments, we ap-
plied the reflection-in-action theory to examine how design
was integrated into our participants’ actions.

In this section, we present insights gained from our obser-
vations into mashup programming, as discovered through
the application of the lens of design. First, we show an
overview of how participants cycled through the different
steps of the reflection-in-action model, namely framing,
acting, and reflecting. Next, we present detailed insights
gained using the design lens in each of the three stages. For
each result, we provide implications for the design of ma-
shup environments.

To provide context for the rest of the paper, we first provide
the participants’ success levels in achieving the given task.

In particular, participants’ IDs are ordered by their success
levels as measured by the number of requirements they
achieved during the task (listed in parentheses): F1(4),
F2(2.5), F3(2), F4(2); M1(3.5), M2(3.5), M3(3), M4(3),
M5(2.5), and M6(2). Half points indicate partially fulfilled
requirements, e.g., not all movies showing a picture.
Reflection-in-action cycles
To get an overview of participants’ behaviors, we graphed
the result of the reflection-in-action code set over time. As
Figure 2 shows, participants made extensive use of all three
phases, iterating tightly through the reflection-in-action
cycles. In particular, we identified three common patterns:
stair-step, w, and restart. The stair-step pattern refers to a
succession of consecutive episodes of framing, acting and
reflecting. The w pattern refers to participants switching
more than one time from framing to acting and back or
from acting to reflecting and back. The other pattern, which
occurred occasionally, was the restart pattern, in which
reflection led to a return to the framing stage. An example
of each pattern is illustrated in Figure 2. Notably absent was
any kind of waterfall-like pattern that would have featured a
fairly long period of framing alone first, then a fairly long
sequence of acting without returning to framing, then a se-
quence of reflecting. This indicates that our participants
used a highly iterative development style—not one charac-
terized by lack of design, but rather one peppered with nu-
merous instances of “micro design”.

Framing the Problem
“Create a mashup to…”—but how? In order to begin, one
needs to have a grasp of the problem. The notion of framing
captures efforts to understand and define the problem [26].
We discovered two issues participants encountered in the
framing stage. First, successful participants’ framing efforts
often produced actionable ideas to guide their actions whe-
reas the unsuccessful ones’ often did not. Further, we found
that unsuccessful framing episodes were often followed by
design barriers. Second, participants’ inclination to reframe
in the face of failure differed. We discuss each of these is-
sues next.

Code Example
Reflection-in-action (mode switches)

Framing It looks like I have to have multiple VirtualEarth.
Acting [Adds another VirtualEarth block]

Reflecting So it gives me the theaters, and the movies
themselves.

Ideations (instances)
Ideas for blocks Expansion: [Adds LocalMovies to the workspace]

Contraction: [Removes block LocalMovies]

Ideas for which
blocks to connect

Expansion: So I need to connect LocalMovies to
VirtualEarth
Contraction: [Removes link from LocalMovies to
Flickr]

Ideas for block de-
pendencies

Contraction then expansion: [Changes value for
title from Local Movies’ Theater Name to Local
Movies’ Movie Name]

Within-block ideas Expansion: [Types THEATER CITY STATE in
title field]

Barriers (instances)
Design So I’m going to start all over. [Removes all

blocks] I still don’t understand…
Selection Now I’m searching for information about each

movie. I need to go where?
Coordination I cannot see any pictures or MSN News from the

results even though I had connected them to-
gether.

Use I didn’t use the right options.
Understanding I don’t know what happened and why it didn’t

work.
Table 1. Code sets

Figure 2. Reflection-in-action: examples from four partici-
pants: framing (bottom category of y-axis), acting (middle),

and reflecting (top) over time. Blanks indicate time spent
outside of reflection-in-action, e.g., taking the mid-task tu-

torial.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1012

Good framing output guides effective actions
When analyzing our participants’ framing episodes, we
noticed that the successful episodes were able to suggest
actionable ideas as to how to proceed with the task, whereas
the unsuccessful often failed to do so. This difference drew
our attention to the importance of framing’s output, i.e.,
ideas that guided actions. In fact, visiting the framing phase,
whether the participant exited with or without output, was
often critical to the success of what came next.

For instance, M1’s framing usually produced output in the
form of actionable ideas, and his subsequent actions made
direct use of those ideas. As an example, earlier in his task,
he had set up Flickr to get pictures of movies. Then he dis-
covered a problem in minute #11—his mashup did not re-
turn pictures. He re-entered the framing phase briefly in
minute #11, producing the hypothesis that the pictures’
sorting criterion might be wrong. He translated this idea to
action immediately (minute #12):

M1: “Theater address may not be right.” [Changes the
sorting criterion in Flickr] “Sort by movie names”

By contrast, F4, the least successful participant, often failed
to produce actionable ideas from her framing. For example,
numerous times she filtered out possible ideas before even
trying to follow up on them, such as at minute #4:

F4: “Flickr. Settings.” [Looks at getGeoTaggedPhotos
which is the default operation and getPhotos. Leaves the
default selected.]“Ok I’m doing this wrong…”

F4’s low self-efficacy (3.3, vs. an average of 3.48 for fe-
males and 3.8 for all) may have hindered the production of
such output, perhaps because it turned her focus toward her
own capabilities and away from solving the problem itself.
When her framing did not produce outputs, F4 had no in-
puts for the action phase. She flailed, choosing actions to
try at random, often repeating ideas that she had already
tried multiple times:

F4: …“Didn’t work…Click to get mashing ideas” [Reads
mashing suggestions:] “GeoNames, Flickr…” [Hovers
over Phonebook. Picks GeoNames. Hovering, reads:] “get
latitude and longitude” <which is the default>
“Oh I keep on doing that.”

Why did participants leave the framing phase without out-
put? One common event tied to this phenomenon was de-
sign barrier instances. Ko et al. characterized design bar-
riers as: “I don’t know what I want the computer to do”
[16]. Ten out of 16 design barriers were followed by fram-
ing episodes with no outputs. Among the framing episodes
following the remaining six design barriers, two ended with
ideas too vague to act upon, and one resulted in a repeating
idea that had failed earlier.

Implications: The close tie between design barriers and
unproductive framing suggests that end-user mashup envi-
ronments can improve end-user programmers’ framing ef-
forts by suggesting ways to overcome design barriers. For

example, F4 specifically sought ideas from the environment
(e.g., see above quote), but she was unable to find them at
the level she sought. Tools to assist end-user mashup pro-
grammers to refine their understanding of the problem and
possible solution ideas could help prevent end-user pro-
grammers from coming away from their framing efforts
empty-handed. According to Schön, experts own repertoires
of past approaches. They bring these repertoires to a new
situation by “imposing” a previously useful frame on it,
testing the fit by seeing if their actions in the new situation
contradict the reused frame. Thus, one promising avenue to
assist end users in framing would be providing users with
examples serving as such a repertoire. Examples are com-
mon in end-user programming environments, and were
available in Popfly—but when examples were available in
this environment, attempts to learn from examples failed
(17 out of 21 among all participants). The problem was that
participants were unable to find the right examples or to
distill useful information from them. This suggests the need
for better support for helping users find the examples they
need to address the problems they are having. Work such as
[14] may inform better design of tools to support utilizing
examples.

If an idea fails, reframe and get a new one
Using the ideations codes, we noticed that some partici-
pants shared the same ideas but the degrees to which they
were attached to those ideas varied greatly. Some partici-
pants refused to discard unworkable ideas, and we viewed
that as inflexibility. As mentioned before, flexibility, the
ability to produce a variety of ideas, is critical to creative
output. One way to achieve this is through what Schön
called reframing; that is to change one’s definition of the
problem to approach it from a different angle, which allows
for the discovery of very different solution ideas.

F4 was an example of inflexibility in her refusal to reframe.
She had the idea in minute #9 that she needed a map when
in fact using a map was not a viable solution to the task.
Other than a brief detour at minute #40, she stayed with that
idea throughout the session, trying to get movie information
and pictures to show up on a map. When her idea failed,
instead of reframing or looking for other alternatives, F4
turned to a “get mashing ideas” tool in Popfly that lists
blocks that could communicate with blocks already in the
workspace. This produced actionable ideas (the suggested
blocks), but these ideas came from the environment, not
from her head. There was no evidence that she reflected on
what had gone wrong with her previous attempts, nor at-
tempted in reframing to rethink the problem. Instead, she
simply repeated actions she had tried before, with no
progress in the mashup itself or in evolving her understand-
ing of the problem or potential solutions.

On the contrary, flexibility in reframing did not seem to be
difficult for the more successful participants; they seemed
to recognize the time to abandon nonproductive ideas. M1
is an interesting contrast to F4, because he started with ex-
actly the same idea as F4, i.e., that pictures needed to be

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1013

placed on a map, and then tried to use exactly the same
blocks as F4, which occurred in minute #6.

But unlike F4, when he did not succeed with that idea, he
abandoned it. After only two attempts to get pictures to
show up on a map failed, he reentered the framing phase to
look for other possible approaches, at which point he came
across the Local Information tab that led to Local Movies.
By minute #12, he had already taken that idea into the act-
ing phase to pursue the Local Movies idea.

The uncertainty in the reframing stage of reflection-in-
action was difficult for even the most successful participant.
For example, F1 said, “I don’t know what I’m doing”. It
especially challenges people with low self-efficacy like F4,
because according to self-efficacy theory, low self-efficacy
often leads to low flexibility [1]. Like F4, low-self-efficacy
people may attribute failures to their own lack of abilities,
thereby pursuing poor ideas too long.

Implications: “What-if” features might help with inflexibili-
ty and unwillingness to reframe for low self-efficacy users.
For example, a tool that would allow users to make assump-
tions about what a block will output might enable users to
explore assumptions in multiple ways. One way might be to
focus on testing the assumption. A second way might be to
focus on companion blocks compatible with that assump-
tion. A third way might be to focus on competing blocks
supporting the same assumption.

Acting upon Ideas
Acting upon ideas can be regarded as “just” implementa-
tion. Even so, its interwoven relationship with design deci-
sions sheds insights on the way ideas progressed in our par-
ticipants’ mashups as well as obstacles to such progression.

In transferring ideas to action, one obvious reason our par-
ticipants took these actions was to follow up on ideas or
hypotheses generated in the framing stage. A second reason
was to produce a specific outcome as distinguished from
those generated by hypotheses or a goal of exploration. A
third reason was exploratory— participants acted to explore
and to see what would happen in order to understand the
situation better. These goals for acting are consistent with
the reflection-in-action theory [26], but in addition we iden-
tified issues with the current support of acting in the envi-
ronment, namely the lack of support for tinkering, elabora-
tion, and parallel explorations of ideas.

Explore and tinker… not so effectively
Schön characterizes exploratory actions as “probing, play-
ful activity by which we get a feel for things” [26]. Re-
search in education [24] and end-user programming [4]
have pointed to the benefits of tinkering. We took note of
tinkering behaviors by looking at the output from framing
and the types of ideations people had. We noticed that par-
ticipants sometimes left the framing phase without concrete
ideas to act on. In those occasions, participants tinkered,
generating fodder for reflection, and sometimes new ideas
or hypotheses that might lead to later developments. For

example, M3 tinkered with the options of the Local Movies
block without prior expectations as to what the changes
would bring about. By tinkering he discovered the useful-
ness of the Local Movies block, i.e., the ability to deliver
theater information, so he retained the block in his mashup
and built other ideas around that.

M3: “I’m just trying to figure out how to get the program to
run to show movies around CITY but I can’t figure it out...
I’ll just keep clicking around ’till I get it… Try a different
operation to see if it works… So far I’ve found out the thea-
ters within CITY…”

M2 and M4 tinkered excessively with blocks’ connections,
reflected in part by the large number of which blocks to
connect ideas (see the dark gray shade in Figure 3; M2 and
M4’s portions are surrounded by rectangles). Although tin-
kering sometimes led to useful outcomes, more often it did
not:

M2: [Links Local Movies to Yahoo Images and MSN News,
which feed to Block Inspector. Runs. Nothing shows] “So,
let’s try all these in series.”[Does that. Runs. Nothing
shows] “Nope. So, I was on the right track before.”

As these examples illustrate, tinkering did not consistently
occur with reflection, impeding participants’ understanding
of the design options available to them in the form of
blocks supplied by the environment or how blocks may
work together. Partially to blame is the cost of carrying
action to reflection in the environment. Popfly’s runtime
view (Figure 1 bottom), the primary facilitator for reflec-
tion, is separate from the implementation interface (Figure
1 top and middle). This separation made it difficult for par-
ticipants to cross-reference mashups with their output.
Moreover, participants were only allowed to view the run-
time results for the entire mashup as opposed to those origi-
nating from tinkering with a portion of the mashup. Be-
cause of these attributes, reflection tended to slow down
ability to act.

Implications: Literature in end-user programming has
shown that tinkering with reflection can be helpful, but tin-
kering without reflection has been associated with negative
outcomes [4]. In our environment, a barrier to carrying ac-
tion to reflection was the cost of running. On the other
hand, previous tinkering research has shown that when the
cost of running can also be too low, encouraging some end

Figure 3. Ideations counts: number of all types of ideations.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1014

users (usually males) to tinker without bothering to reflect
[4]. Thus, in order to encourage tinkering productively, the
cost of crossing the bridge from action to reflection needs to
be carefully considered, so that it is neither too high nor too
low. Grigoreanu et al. has shown that it is possible to influ-
ence tinkering behaviors through feature design [9].

Elaborate, but with moderation
Elaboration is an important component of creativity. By
analyzing the ideations and barriers codes, we discovered
both good and poor elaboration behaviors. For example, F1
was successful at elaborating her ideas systematically. This
was depicted by her organized engagement with all types of
ideas. Her ideation processes often followed a pattern: pick-
ing a candidate block (ideas for blocks), examining its op-
tions (within block ideas), connecting it to other blocks
(ideas for which blocks to connect), and adjusting settings
of blocks to account for the inclusion of the new block
(ideas for block dependencies). As a result of adequate ela-
boration, she was able to distinguish good ideas from poor,
and act effectively toward solving the problem.

In contrast, elaboration was problematic for most partici-
pants. Two major issues were: lack of elaboration and ex-
cessive elaboration. Lack of elaboration was pinpointed by
excessive addition and removal of blocks in the workspace.
Two participants, F2 and M3, were particularly affected by
this problem (see black in Figure 3 for F2 and M3). M3
encountered multiple selection barriers, which refer to diffi-
culties in not knowing what block to use for a desired beha-
vior. Because of this, he excessively added and removed
blocks leading to a failure to elaborate on potentially suc-
cessful ideas based on those blocks.

M3: “So I don’t really know what blocks to use… Cinema-
TopTen came up before - I don’t know if it's useful or what
it does but I'll try it… There’s nothing… I’ll see what Ciga-
rettes is ’cause that seems interesting…”

Some participants demonstrated the opposite behavior, at-
tempting to elaborate excessively but failed to gain benefits
from doing so. In particular, F4 encountered use barriers
(not knowing how to use a block) and coordination barriers
(making blocks to work together) in trying to refine existing
ideas, but regardless of her difficulties, she persisted. These
difficulties prevented her from being able to elaborate ef-
fectively on her ideas and in turn led to an understanding
barrier, i.e., not knowing why the program behaved the way
it did. The following example shows that in the face of a
use barrier, she randomly fiddled with the block’s settings,
and thus failed to elaborate effectively.

F4: “Do I need to change the source for all of these <pa-
rameters for operation>?” [Sighs. Changes the settings
back and forth. Runs] “Why doesn’t it show? I don’t know
what I’m doing wrong.” [Keeps on trying without success]

Implications: Both phenomena of under- and over-
elaboration highlight mashup environments’ lack of support
for various levels of design from the abstract to the con-

crete. We suggest that under-elaboration lies in the possibil-
ity that participants may have perceived elaboration as more
costly than simply choosing another idea. The reason might
be that the environment encouraged detailed implementa-
tion too early. Similarly, we argue that over-elaboration is
linked to the same issue with the environment. For exam-
ple, in order to test a tentative idea that a block might be
useful, rather than being able to make the high-level as-
sumption that it is useful and proceed with the rest of the
design, the user had to go all the way, specifying various
settings for the block and integrating it with the rest of the
mashup in order to test that idea. In cases where an envi-
ronment solely provides detailed implementation mechan-
isms, there is a risk of users to be lured into “trying to make
it better” rather than thinking about the bigger picture. This
phenomenon is particularly important in design [27] and
has led to an important body of research on supporting
sketching in computerized design practice (e.g., [7]). Simi-
lar effort has been made to support “sketching phases” in
user interface development (e.g., [17]). However, these
systems have been targeted to professional designers rather
than casual end-user programmers.

Backtracking: explore ideas in parallel and what else?
Backtracking refers to instances in which participants re-
turned to a previous state of the mashup after exploring
other ideas. We identified these instances by diagramming
ideations in the workspace in a time-wise fashion. All of our
participants backtracked multiple times. There were three
types of backtracking: to pursue alternative ideas, to revert
back to a more successful state, and accidentally re-entering
a previous state.

First, some participants were trying to experiment with
multiple idea alternatives, but as with almost all program-
ming environments, there was no support for this. For ex-
ample, within only three minutes, M3 backtracked to the
same state three times (Figure 4). With each trial, he expe-
rimented with a block for retrieving/displaying pictures that
he hadn’t used before. M3’s experimentation would have
been less time-consuming if he could have done his expe-
riments in parallel and compared results side by side.

Figure 4. M3’s backtracking over three minutes. Each box
represents a different state of his mashup. The numbers show
the order in which M3 (re-)entered and exited LocalMovies.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1015

The second way participants used backtracking was to re-
treat from a path, getting back to a “safe” state. Once back
in a working state, the participant usually went back to
framing, to think of other ideas to try. But this tended to be
error-prone, because sometimes participants had trouble
recalling the exact details of that state.

M2: “So how was this working before?”

M5: “I’m gonna save more often now, like if I screwed up I
could still get something to come up....”

The third way participants backtracked was by accident,
trying to find their way without meaning to return to pre-
vious states. F4 did this. Although she did not intend to
backtrack, she sometimes recognized a state when she
stumbled into it again.

F4: [Adds GeoNames. Hovers over it. Reads description]
“Get latitude and longitude. Oh I keep on doing that…”

Implications: Similarly to designers [19], end users would
benefit from the ability to explore ideas in parallel. Systems
featuring this capability have been implemented for profes-
sionals, e.g., [12, 29]. However, such systems remain large-
ly absent from end-user programming, with a notable ex-
ception in [12]. Additionally, programming environments
should support end users’ need to return to an earlier salient
step in their design, for instance by permitting them to
bookmark their exploration. Our participants relied on their
memory to do this, which was error-prone. Finally, since
backtracking is detectable, it might be possible to gently
map the user’s journey through state space, to avoid the
wasted effort of returning to a state multiple times by acci-
dent.

Reflecting upon Acting
Analyzing participants’ reflection phases, their actions in
between reflections, and understanding barriers they had,
we identified two salient issues with the support of reflec-
tion in Popfly. First, some participants carried out a large
number of actions before they reflected and thus missed out
on the opportunity to identify the impact of each action.
Second, once the mashups’ results were shown, participants
lost the ability to refer back to the program’s logic (as the
Edit interface was separate from the Run view), and hence
they could not efficiently debug. Not surprisingly, nearly all
participants experienced understanding barriers, i.e., not
knowing why the program did what it did.

Actions were reflected by ideations in the workspace. For
example, having an idea for block meant adding a block to
the mashup. Thus, upon visually exploring the occurrences
of the ideations codes, we noticed that F4 underwent many
actions before reflecting on them. For each participant, we
then calculated the number of actions carried before an
evaluation of the mashup, i.e., running it. Figure 5 provides
a visualization of the number of ongoing actions between
runs. F4 clearly stands out, as she made many changes (46
actions) to her mashup before the first run which happened

at minute #26. To a lesser extent, F2 and M5 demonstrated
a similar pattern (minute #33 and minute #13 respectively).
These participants had difficulty evaluating which action
caused the changes in results. M5 eventually recognized
that this strategy was not working for him, realizing that his
program had become so complex, he could not debug it. At
that point, he started removing blocks, which rapidly turned
his progress around.

M5: “Simplicity”[Runs. Theater and movie info shows up.]
“Oh, ok. There we go. I was getting way too complicated.”
“It works well to run the program at each step.”

In contrast, the most successful participant, F1, reflected
upon her actions frequently. In this example, she did only
two actions (adding a block and selecting an operation for
it) before she reflected by running her mashup:

F1: “Ooh, Local Movies” [Adds it. Looks into block’s set-
tings] “getTheaters <AndMovies>”<default operation>
“So I just hit run”[looks at results] “Theaters. Ok so I have
a really long list of movies. And show times.”

Additionally, we noticed that five participants had on occa-
sions no actions carried out between runs. One possible
reason was that the environment separated the mashup’s
output from its logic so when running the mashup, its logic
was no longer available for reference. Thus, participants
had to memorize one screen before switching to the other.
In fact, three participants took notes on the outputs before
going back to editing the mashups. Memorization is taxing,
and the cost of running could also have deterred partici-
pants from frequent runs to enable reflection.

Implications: These phenomena suggest two implications.
First, there is a need for mashup environments to not only
reduce effort of running per se but also the effort of marry-
ing the runtime output with the program’s logic itself. The
environment could for instance provide micro-evaluations
of local portions of the mashup during the implementation
phase (e.g., what is the output of this particular block if I set
it up like this). Moreover, the environment could provide
references between the outcomes of the mashup and its log-

Figure 5. Accumulation of idea actions (expansions and con-
tractions) before run. Color gets darker as idea actions accu-
mulate. Color is reset to very light whenever participant hits
“Run”. (White spaces are pauses in which no actions take
place.) For example, F4 accumulated 46 idea expansions and
contractions before she first hit “Run” in minute #26.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1016

ic, by highlighting relationships between them. However,
solutions to these problems are inherently difficult for ma-
shups, since their performances also rely on remote provid-
ers of information that may not always be responsive.

Second, while professional programmers and even novice
computer science students get a lot of practice honing their
problem-solving strategies for debugging such as isolating
variables, end-user programmers may not have developed
debugging strategies like these. Tools for debugging by
end-user programmers could provide hints for debugging
strategies, as demonstrated in spreadsheet software [9].

PERSPECTIVES ON THE DESIGN LENS
Consideration of programming through a design lens pro-
vided unique insights into the process of programming by
these end users. Traditionally, empirical studies of pro-
grammers generally apply theories from psychology, use a
bottom-up grounded theory approach, or test hypotheses
about behavior. Further, that literature considers design and
programming to be two different, albeit sometimes highly
iterative, phases. Our approach, in contrast, implies that
every choice our participants made, large or small, could be
viewed through a design lens. Doing so amounts to consi-
dering programming as the paths of ideas from their begin-
ning to their end.

We primarily used the reflection-in-action framework as a
tool for our analysis, deriving it into a code set sufficiently
robust for our purpose. The theories from design, creativity,
and programming literature contributed to the code set as
well, and moreover helped us to pinpoint, explain, and in-
terpret the patterns we found. We developed two useful
tactics for understanding paths of ideas. The first was the
use of visualization tools to view patterns of the interactions
between code sets at multiple levels of abstraction. The
second was the use of triangulation, arriving at the same
answer from more than one perspective, i.e., analyzing data
using design, creativity, and end-user programming pers-
pectives concurrently, merging and comparing their output.
These two aspects were intertwined.

Regarding visualizations, we found two types to be particu-
larly helpful in understanding how ideas evolved. We call
the first type “idea graphs”. These were graphs representing
the state of the participants’ ideas that they elaborated upon
and retracted explicitly in the workspace. Figure 4 is an
abstract view of one of these; the detailed version we used
depicted every major state transition of a participant’s “idea
set” with all arrows labeled with actions triggering the tran-
sitions.

The second main visualization type represented the coded
data over time. For this type of analysis, we found that the
ability of the visualization software to quickly create com-
binations of codes into a new “supercode” to explore emer-
gent patterns was crucial. For example, we supplemented
Figure 5 with annotations denoting interesting events from
other code sets, which particularly highlighted issues with
elaboration. Exploring the co-occurrences of codes from

different code sets allowed for the exploration of the data
from different perspectives simultaneously (e.g., using de-
sign, creativity codes, and barrier codes). In doing so, we
effectively conducted a triangulation process by analyzing
our data from different angles.

The design lens proved useful to us at getting a perspective
on end-user programmers’ ideation processes. Ideally, we
suggest that this method should be combined with more
traditional ways to study end-user programming, allowing a
triangulation process involving two major perspectives:
traditional approaches of understanding programmers, to-
gether with the emphasis on ideations from design and crea-
tivity literature.

CONCLUSION
In this paper, we have presented a design theory-based ap-
proach to investigating programming by end users. We
demonstrated the usefulness of this approach by applying
the reflection-in-action design model and the ideation no-
tion from creativity literature to the think-aloud protocols
from ten participants creating web mashups. The results
revealed ample opportunities for environments to better
support end-user programming as a design activity.

Therefore, our work makes three contributions: 1) the me-
thodology of applying a theory-based design perspective to
programming, 2) evidence of the usefulness of using this
approach through insights gained, and 3) the insights them-
selves into end-user programmers’ problem-solving at-
tempts, with implications for design of end-user program-
ming environments for mashups. Implications included
support for meaningful tinkering, for effective reflection,
and for exploration of multiple design alternatives in paral-
lel in end-user programming environments.

Using design theory as a perspective on end-user program-
ming thus shows promise in helping researchers to better
understand the problems faced by end-user programmers,
aiming toward future environments that can avoid the kinds
of problems encountered by some of our participants.

 F4: “This is so hard for me. Why is it so difficult?”

ACKNOWLEDGMENTS
This work was supported in part by NSF grants 0917366,
0325273 and 0324844.
REFERENCES
1. Bandura, A. Self-efficacy: Toward a unifying theory

behavioral change. Psychological Review 8, 2 (1977),
191-215.

2. Bayazit N. Investigating design: A review of forty years
of design research. Design Issues 20, 1 (2004), 16-29.

3. Beckwith, L. Burnett, M., Wiedenbeck, S., Cook, C.,
Sorte, S., and Hastings, M. Effectiveness of end-user
debugging software features: Are there gender issues? In
Proc. CHI 2005, ACM Press (2005), 869-878.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1017

4. Beckwith, L., Burnett, M., Grigoreanu, V., and Wieden-
beck, S. Gender HCI: What about the software? IEEE
Computer 39, 11 (2006), 83-87.

5. Boden, M. The Dimensions of Creativity. MIT Press
Cambridge, London, England, 1994.

6. Compeau, D. and Higgins, C. Computer self-efficacy:
Development of a measure and initial test. MIS Quarter-
ly 19, 2 (1995), 189-211.

7. Do, E. and Gross, M. Inferring design intentions from
designers’ sketches – An investigation of freehand
drawing conventions in design, In Proc. CAADRIA’97
(1997).

8. Gray, W. D. and Anderson, J. R. Change-episodes in
coding: When and how do programmers change their
code? Second Workshop on Empirical Studies of Pro-
grammers, Ablex Publishing Corp., Norwood, NJ, 1987.

9. Grigoreanu, V., Cao, J., Kulesza, T., Bogart, C., Rector,
K., Burnett, M., and Wiedenbeck, S., Can feature design
reduce the gender gap in end-user software development
environments? In Proc. VL/HCC 2008, IEEE (2008),
149-156.

10. Guilford, J. P. Intelligence, Creativity and Their Educa-
tional Implications. Robert R. Knapp, San Diego, CA,
1968.

11. Guindon, R. Designing the design process: Exploiting
opportunistic thoughts. Human-Computer Interaction 5,
2 (1990), 305-344.

12. Hartmann, B., Yu, L., Allison, A., Yang, Y., and Klem-
mer, S. Design as exploration: Creating interface alter-
natives through parallel authoring and runtime tuning. In
Proc. UIST 2008, ACM Press (2008), 91-100.

13. Jeffries, R., Turner, A. A., Polson, P. G., and Atwood,
M. E. The processes involved in designing software. In
Cognitive Skills and their Acquisition, Anderson, J. R.
(Ed.), Lawrence Erlbaum Associates, Hillsdale, NJ,
1981, 255-283.

14. Herring, S., Chang, C., Krantzler, J., and Bailey, B. P.,
Getting inspired! Understanding how and why examples
are used in creative design practice. In Proc. CHI 2009,
ACM Press (2009), 87-96.

15. Kannengiesser, U. and Zhu, L. An ontologically-based
evaluation of software design methods, The Knowledge
Engineering Review 24, 1 (2009), 41-58.

16. Ko, A. J., Myers, B., and Aung, H. Six learning barriers
in end-user programming systems. In Proc. VL/HCC
2004, IEEE Computer Society (2004), 199-206.

17. Landay, J. A. and Myers, B. A., Sketching interfaces:
Toward more human interface design, IEEE Computer
34, 3(2001), 56-64.

18. Milgram, R. M. Creativity: An idea whose time has
come and gone, in Theories of Creativity. Mark, R. A.
and Robert, A. S. (Ed.). Sage Publications, London, UK,
1990.

19. Myers, B., Park, S. Y., Nakano, Y., Mueller, and G., Ko,
A. How designers design and program interactive beha-
viors. In Proc. VL/HCC 2008, IEEE (2008), 177-184.

20. Nardi, B. A Small Matter of Programming: Perspectives
on End-User Computing. MIT Press, Cambridge, MA,
1993.

21. Rist, R. S. Knowledge creation and retrieval in program
design: A comparison of novice and intermediate stu-
dent programmers. Human-Computer Interaction 6, 1
(1991), 1-46.

22. Rode, J. and Rosson M. B. Programming at runtime:
Requirements and paradigms for nonprogrammers’ web
application development. In Proc. VL/HCC 2003, IEEE
(2003), 23-30.

23. Rosson, M. B., Sinha, H., Bhattacharya, M., Zhao, D.
Design planning in end-user web development, In Proc.
VL/HCC, IEEE (2007).

24. Rowe, M. B. Teaching Science as Continuous Inquiry
(2nd. Ed.), McGraw-Hill, New York, NY, 1978.

25. Runco, M. A. Creativity Theories and Themes: Re-
search, Development, and Practice. Elsevier Academic
Press, Burlington, MA, 2007.

26. Schön, D. A., The Reflective Practitioner: How Profes-
sionals Think in Action. Basic Books, New York, NY,
1983.

27. Simpson, M. and Viller, S. Observing architectural de-
sign: Improving the development of collaborative design
environments. In Proc. CDDVE’04 (2004).

28. Sommerville, I. Software Engineering (8th Ed.), Pearson
Education Limited, Harlow, England 2006.

29. Terry, M., Mynatt, E., Nakakoji, K., and Yamamoto, Y.
Variation in element and action: Supporting simultane-
ous development of alternative solutions. In Proc. CHI
2004, ACM Press (2004), 711-718.

30. Visser, W. Organization of design activities: Opportu-
nistic, with hierarchical episodes. Interacting with Com-
puters 6, 3 (1994), 239-274.

31. Visser, W. Designing as construction of representations:
a dynamic viewpoint in cognitive design research. Hu-
man-Computer Interaction 21, 1 (2006), 103-152

32. Wong, J. and Hong, J. I. Making mashups with marmite:
Towards end-user programming for the web. In Proc.
CHI 2007, ACM Press (2007), 1435-1444.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1018

