
Short and Tweet: Experiments on Recommending Content
from Information Streams

Jilin Chen*, Rowan Nairn†, Les Nelson†, Michael Bernstein∆, Ed H. Chi†
* University of Minnesota

200 Union Street SE,
Minneapolis, MN 55455

jilin@cs.umn.edu

† Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto,

CA 94304
{rnairn, lnelson, echi}@parc.com

∆ MIT CSAIL
32 Vassar Street, Cambridge,

MA 02139
msbernst@mit.edu

ABSTRACT
More and more web users keep up with newest information
through information streams such as the popular micro-
blogging website Twitter. In this paper we studied content
recommendation on Twitter to better direct user attention.
In a modular approach, we explored three separate
dimensions in designing such a recommender: content
sources, topic interest models for users, and social voting.
We implemented 12 recommendation engines in the design
space we formulated, and deployed them to a recommender
service on the web to gather feedback from real Twitter
users. The best performing algorithm improved the
percentage of interesting content to 72% from a baseline of
33%. We conclude this work by discussing the implications
of our recommender design and how our design can
generalize to other information streams.

Author Keywords
Information stream, recommender system, topic modeling,
social filtering.

ACM Classification Keywords
H.5.3: Group and Organization Interfaces.

General Terms
Algorithms, Experimentation

INTRODUCTION
Information streams have recently emerged as a popular
means of information awareness. By information streams
we are referring to the general set of Web 2.0 feeds such as
status updates on Twitter and Facebook, and news and
entertainment in Google Reader or other RSS readers.
Although they have notable differences, the above
examples share two key commonalities: (1) they deliver to
each user a stream of text entries over time that are
personalized to the user’s subscriptions, and (2) they allow
users to explicitly interact with each other. As information

distribution platforms, Twitter, Facebook and Google
Reader have all enjoyed great popularity and are drawing
ever more new users into them. For instance, according to
compete.com’s traffic statistics, the total number of people
visiting Twitter has been rising from about 6 million per
month in January 2009 to over 23 million per month as of
July 2009 (http://siteanalytics.compete.com/twitter.com/).

With an abundance of information comes the scarcity of
attention [20]. Two user needs arise from attention scarcity:
filtering and discovery. On the one hand, a user’s stream
will often receive hundreds of items each day, much beyond
what users have time to process. Users would like to filter
the stream down to those items that are indeed of interest.
On the other hand, many users also want to discover useful
content outside their own streams, such as interesting URLs
on Twitter posted by friends of friends, or relevant blogs in
Google Reader that are subscribed by other friends. This
discovery task is formidable, given the vast amount of
information that are disseminated daily through information
stream services.

One approach is to proactively recommend interesting
content to users so as to better direct their attention. Google
Reader has implemented a discovery feature that
recommends interesting RSS feeds, and a number of third-
party websites provide filtering or recommendation services
for Twitter users. So far there has been little discussion
regarding the effectiveness of such solutions, and little is
known regarding the design space of information stream
recommenders.

As a domain for recommendation, information streams have
three interesting properties that distinguish them from other
well-studied domains:

(1) Recency of content: Content in the stream is often
considered interesting only within a short time of first being
published. As a result, the recommender may always be in a
“cold start” situation [19], i.e. there is not enough data to
generate a good recommendation.

(2) Explicit interaction among users: Unlike other domains
where users interact with the system as isolated individuals,
with information stream users explicitly interact by
subscribing to others’ streams or by sharing items.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

CHI 2010: Understanding Comments April 10–15, 2010, Atlanta, GA, USA

1185

(3) User-generated content: Users are not passive
consumers of content in information streams. People are
often content producers as well as consumers. Micro-
blogging software such as Twitter and Facebook status
updates are prominent examples.

In this paper we describe our design and empirical studies
of a recommender system built on top of Twitter, called
zerozero88, which recommends URLs that a particular
Twitter user might find interesting. The recommender we
developed is publicly available at www.zerozero88.com.

We chose Twitter as our target platform for several reasons,
most importantly because it shares all the common features
of information streams described earlier. As a successful
platform, Twitter also provides a chance to recruit real users
and alleviate their real attention scarcity problems. Finally,
Twitter provides a set of public APIs, enabling us to
implement and deploy our recommender. We chose to
focus on recommending URLs, because the URL represents
a common ‘unit’ of information on the web, and previous
research has identified sharing URLs and reporting news as
common uses of Twitter [9].

We wish to investigate:

(a) Whether recommender systems can help users find
interesting content on Twitter?

(b) What elements lead to an effective Twitter-based
recommendation? How can this understanding inform
recommender design for other information streams?

To achieve our research goals, we first conducted pilot
interviews to elicit early qualitative feedback and refine our
system design. After implementing the system, we
conducted a controlled field study on our web service to
gather quantitative results.

The rest of the paper is structured as follows. First, we
discuss how existing research relates to our work. We then
provide an overview of information production and
information seeking practices on Twitter. We describe the
design space of our recommender, and then detail our
studies and the results. We conclude with discussions of our
findings that may generalize to other information streams.

RELATED WORK
Recommenders as a solution to attention scarcity have been
studied for years. Perhaps the most well-known approach is
collaborative filtering (CF), which recommends items (such
as news stories) using similarities of preferences among
users [10]. This approach does not rely on the content of
items, but instead requires users to rate items to indicate
their preferences, and infers preference similarity from the
overlap of rated items across users.

CF recommenders commonly suffer from little user rating
overlap early on, known as the “cold-start” problem; a
common solution is to use other information like the textual
content of the items to be recommended [4, 19].

There is a wealth of research on recommenders that utilize
the content of items. Such recommenders are often used in
domains where extensive textual content is available for
items, such as websites [14] and books [13]. For example,
to recommend websites, Pazzani et al. first created bag-of-
word profiles for individuals from their activities and then
chose websites most relevant to the profile of the individual
as recommendations [14]. Because activities of an
individual are often insufficient for creating useful profiles,
Balabanovic et al. proposed to create profiles not from an
individual’s activity but from a group of related individuals
[4]. This work can be viewed as a hybrid of collaborative
filtering and content-based approaches [12].

Recommendations can be generated from explicit social
information and social processes as well. For example, Hill
et al. described a social filtering recommender on Usenet
newsgroups [8]. For each newsgroup, they recommended
the most frequently mentioned URLs to that group.
Andersen et al. proposed the concept of a trust-based
recommender [2]. From a theoretical perspective they
discussed ways to employ users’ opinions toward other
users to compute recommendations. Several other papers
investigated the possibility of using social network
structures for recommendation [5, 7]. For example, Chen et
al. recommended friends-of-friends as potential friends to
users of a social networking site, and showed that this
scheme is accepted more often than recommending people
sharing common keywords [5].

Prior research in developing scalable recommenders [6, 15,
18] is also relevant here because the Twitter ecosystem is so
huge that many otherwise useful algorithms become
intractable. For example, Sarwar et al. applied clustering
algorithms to partition user population, built neighborhoods
for users from the partition, and considered only those
neighborhoods when computing recommendations [18].
Another relevant work integrated distributed computation
techniques for recommendation in Google News [6]. These
techniques recursively chop a full problem into sub-
problems, so that in the end they can utilize all information
in the system despite the large scale of the data.

Outside of academic research, several start-up companies
provide information stream filtering or recommendation
services, such as my6sense.com, feedafever.com, and
MicroPlaza.com. Both my6sense and feedafever filter RSS
feeds, including Twitter streams. MicroPlaza recommends
personalized news for Twitter users. As start-ups, none of
them disclose their approaches or benchmarks.

Because Twitter has both textual and social information
available, key parts of the past work described above may be
applicable for a Twitter recommender. However, most of
them have not yet been implemented and evaluated on
Twitter or information streams in general. As a result, it is
unclear whether these techniques function well given the
differences between their original domains and Twitter, or if
some techniques need to be changed to fit the needs of

CHI 2010: Understanding Comments April 10–15, 2010, Atlanta, GA, USA

1186

Twitter users. Our work not only depict the design space for
a Twitter recommender, but also better inform designers of
recommenders for other information streams.

INFORMATION PRODUCTION & SEEKING ON TWITTER
Twitter describes itself as a micro-blogging service. Users of
the site can post short messages, each up to 140 characters,
commonly known as tweets. As information producers,
people post ‘tweets’ for a variety of purposes, including daily
chatter, conversation, sharing information/URLs and
reporting news [9]. Other information streams may have
different dominating purposes for posting. For example, on
Facebook most of status updates are daily chatter and
conversation, while a majority of blog posts in Google
Reader may be for information sharing.

As an information seeker, each Twitter user sees a tweet
stream when visiting Twitter. A new account only includes
tweets posted by one’s self; one can include another user’s
tweets by following that user. Throughout this paper,
whenever user A follows user B, we refer to A as B’s
follower, and B as A’s followee.

While some might refer to their followees as their “friends”,
the following relationship on Twitter is not reciprocal, and
does not necessarily imply friendship or even acquaintance
between two users. For example, over two million users
follow Barrack Obama, few of whom he follows back.
Obviously, those people follow President Obama because
they are interested in what he says, not because they are
personal friends with him. This mechanism of following is
different from friendship in other sites such as Facebook,
where connections between people are always reciprocal and
require confirmation from both sides.

A typical Twitter user picks a list of followees by hand and
monitors her personal stream over time. People can also
discover information outside their stream in a number of
ways, including typing the username of an arbitrary user to
see her stream, checking the most popular topics across the
whole Twitter site, searching for tweets over the whole
Twitter site by keywords, or using one of many third party
services that support exploration on Twitter.

DESIGNING RECOMMENDERS FOR TWITTER
We form our design space into three dimensions: (1) how to
select candidate URLs, (2) how to use content information,
and (3) how to use social information. We illustrate the full
design space in Table 1, where each cell is a possible design
choice we can make in one of the three dimensions.

We discuss each dimension in the following subsections.
Then, we will elaborate on possible system designs and
articulate design questions that we answer through
empirical studies. The conceptual model of the system that
we built is shown in Figure 1.

We did not consider collaborative filtering in our design, as
this would require each URL to have feedback from several
users to compute reliable recommendations. Moreover, the
real-time value of URLs on Twitter requires recommenders
to consider new URLs as soon as possible. Under those
two constraints, in order to obtain enough feedback for
URLs before they become too old to be valuable, the
recommender needs a large volume of real-time usage data,
as demonstrated in the Google News recommender [6].
However, since we do not have access to large amounts of
usage data, this is not a viable option for us. As a result, in
formulating our design space, we focused on using content
of the tweets and information from social processes.

Selecting the Candidate Set
In building our Twitter based URL recommender, we must
first select a limited candidate set of URLs for
recommendations due to the high volume of tweets on
Twitter. According to TweeSpeed.com, as of September
2009, the number of tweets sent per hour on Twitter ranges
from 400,000 to 1,400,000. Scanning those tweets for
URLs in real time is a technical challenge. Given limited
access to tweets and processing capabilities, our first design
question is how to select the most promising candidate set
of URLs to consider for recommendations.

Our problem of selecting a candidate set of URLs bears
similarities to prior work on scalable recommenders [15,

Twitter

Popular
URLs

URLs from
Users’ Local

Neighborhoods

Users’
Tweets

Users’ Followees’
Tweets

Topic Relevance
Models

Social Voting
within Users’

Local
Neighborhoods

Ranking URLs
Using Topic

Relevance and
Social Voting

Recommendations

Figure 1. Conceptual Model of the Whole Recommender

Design Dimension Possible Design Choices

CandidateSet: Selecting Candidate Set FoF (followee-of-followees) Popular

Ranking-Topic: Ranking Using Topic Relevance Self-Topic score Followee-Topic score None

Ranking-Social: Ranking Using Social Voting Vote score None
Table 1. The Design Space of the Recommender, Spanning 2x3x2=12 Possible Algorithm Designs

CHI 2010: Understanding Comments April 10–15, 2010, Atlanta, GA, USA

1187

18], because they encountered the same challenge of not
being able to process the full dataset due to its scale.

In particular, Sarwar et al. [18] have shown that by
considering only a small neighborhood of people around the
end user, we can reduce the set of items to consider, and at
the same time expect recommendations of similar or higher
quality. While Sarwar et al. built the neighborhood based
on similarity in preferences, for a Twitter user we limit our
consideration to her social neighborhood: for a user Alice,
we consider only URLs posted by her followees and
followees of followees.

This scheme makes sense intuitively on Twitter as well:
Imagine Alice follows Bob. In doing this, Alice has treated
Bob as a promising information source. As a result, it is
reasonable to assume that Alice’s interest in URLs from
Bob and people that Bob considers promising should be
higher than URLs from a random stranger on Twitter. This
comes from the principle of locality.

A second intuition is the popularity of URLs: URLs that are
posted all over Twitter are probably more interesting than
those rarely mentioned by anyone. Popular Twitter news
website Tweetmeme.com operates with this intuition, where
users can browse the most popular URLs in the last 24
hours or in the last week on Twitter. This approach yields
an alternative way of choosing the candidate set: popular
URLs on Twitter. We use the public API from Tweetmeme
to gather such URLs.

In summary, we decided to consider two approaches in
selecting candidate sets of URLs, referred as FoF
(followee-of-followees) and Popular. Because URLs posted
on Twitter are usually highly interesting only within a small
timeframe, we further limit our consideration to URLs
created within the last 7 days.

Ranking URLs Using Topic Relevance
Using topic relevance is an established approach to
compute recommendations [4, 5, 7, 12, 13, 14]. The topic
interest of a user is modeled from text content the user has
interacted with before, and candidate items are ranked by
how well they match the topic interest profile of the user.

Following the approach in Pazzani et al. [14], we build a
bag-of-words profile for each Twitter user. Unlike in
Pazzani et al., where the profile consists of words from web
pages that the user has rated explicitly, here we build the
profiles from words that users have included in their tweets.

The detail of this approach is as follows: We extract and
stem words from all tweets we collected, and then filter
them through a standard stop word list. Then for each user u
we create a profile – a vector uV =()(1wvu ,…,)(mu wv),
where m is the total number of distinct words in all tweets,
and each)(iu wv describes the strength of u’s interest in
word iw . The value of)(iu wv is calculated using a term-
frequency inverse-user-frequency weighting scheme (TF-
IDF) [17]:

uTF (iw)=(frequency of iw in u ’s tweets)

uIDF (iw)=log[(#all users)/(#users using iw at least once)]

)(iu wv = uTF (iw) ⋅ uIDF (iw), and then normalized so
that the norm of uV is 1.

Intuitively, high TF of a word means that the user mentions
the word frequently, indicating higher interest, while high
IDF of a word means that few other users mention this
word, indicating that the word can better distinguish one
user from other users.

This approach builds u’s profile from u’s own tweets,
which we later refer to as u’s Self-Profile. It assumes that
u’s interest can be modeled by what u talks about, and thus
captures u’s interest as an information producer.

However, u’s Self-Profile may not capture u’s interest as an
information seeker, for u may follow many different other
users. For example, u may tweet only about HCI research,
but follow people not only for HCI research but also pop
music. In this case, u’s Self-Profile will capture HCI
research, but miss pop music completely.

To capture u’s interest as an information seeker, we build
another profile for u, referred to as u’s Followee-Profile, by
combining the Self-Profiles of u’s followees. Prior works
[4, 12] have demonstrated the effectiveness of combining
text content from a user group to capture the interest of
single user, although their motivation is to solve the cold-
start problem and the data sparsity problem and not to
model a different type of interest.

We build u’s Followee-Profile as follows: For each of u’s
followees f, we denote f’s Self-Profile vector as fV . We
pick all words that f has mentioned at least once, rank them
by decreasing order of their fv in fV , select the top 20%
of words in the ranked word list, and then remove words
that none of u’s other followees mention.

We call the resulting set of words f’s high-interest words,
because intuitively they are the words that f is most
interested in as information producers. We remove words
that only f tweets about because otherwise many incidental
words that only f cares about would be included, bringing in
too much noise into the model.

We then compute u’s Followee-Profile from the high-
interest words of u’s followees. u’s Followee-Profile takes
the same form as Self-Profile, but with a different TF value,
denoted as uFTF (iw)=(# u ’s followees who have iw as
their high-interest words).

Intuitively, high FTF of a word in u’s Followee-Profile
means that many of u ’s followees commonly tweet using
the word. Thus, by modeling from salient words used by
people that u decides to follow, u ’s Followee-Topic
captures u ’s interest as an information seeker.

CHI 2010: Understanding Comments April 10–15, 2010, Atlanta, GA, USA

1188

The topic of a URL can also be modeled as a word vector.
Its formulation is the same as Self-Profile of a user, except
that in this case the TF is the number of times a word has
been used to describe the URL in tweets. Intuitively, the
more often a word has been used to describe a URL, the
more likely the word is relevant to the URL. This approach
has the benefit that the topic of the URL can be modeled
independently from the actual web page content. Ignoring
the web page content enables us to model the topics of
URLs that contain little reliable textual content in
themselves, such as URLs of images and videos (e.g.,
TwitPic and TwitVid). In the case that a URL is only
mentioned in a small number of tweets, we employ an
additional term expansion technique to obtain more related
words for the URL, in an approach similar to what has been
used in Sahami et al. [16].

Given the topic profile vector for a user (either Self-Profile
or Followee-Profile) and the topic vector for an URL, we
compute the cosine similarity between the two vectors as
the topic relevance score between the user and the URL.
Given the score, we then recommend the URLs with
highest scores. Relevance ranking with cosine similarity is
commonly used in information retrieval, and has been used
for recommenders as well [14].

We refer to the topic relevance score using Self-Profile as
Self-Topic, and the score using Followee-Profile as
Followee-Topic. Intuitively, a high Self-Topic score means
that the URL matches the user’s interest as information
producer, while a high Followee-Topic score means that the
URL matches the user’s interest as information seeker.

Ranking URLs Using Social Process
We draw insight from Hill et al. [8] to utilize social
processes for recommendation. Hill et al. described a social
filtering system that recommends news URLs on Usenet
newsgroups. The system works like a within-group popular
vote: in each group (e.g. comp.software), it recommends
most popular URLs on a “one person, one vote” basis – the
more people in the group who mention a URL, the more
likely the URL will be recommended.

This approach is easily adapted to Twitter, by replacing the
notion of a newsgroup with a user’s followee-of-followees
neighborhood. Assuming the user has a stable interest and
follows people according to that interest, people in the
neighborhood should be similar minded enough so that
voting on the neighborhood can function effectively just
like within a Usenet newsgroup of a specific topic.

However, the “one person, one vote” basis in the approach
above may not be the best design choice in Twitter, because
some people may be more trustworthy than others as
information sources. Andersen et al. discussed several key
insights in their theory of trust-based recommender systems
[2], one of which is trust propagation. Intuitively, trust
propagation means my trust in Alice will increase when the
people whom I trust also show trust in Alice. Following this
argument, a person who is followed by many of a user’s

followees is more trustworthy as an information source, and
thus should be granted more power in the voting process.

Another intuition on Twitter regards the frequency with
which a person tweets. Some people may post chatter or a
fun video every hour, while others may only post when they
feel the information is truly worthwhile to share. We thus
weigh people differently based on their tweet frequency,
and grant people who tweet less frequently more vote
power. This design intuition has been noted in the
interviews from several Twitter users in a pilot study.

We then define our weighted voting process as follows: For
a user u , the vote score of a URL is the total vote power of
all u ’s followee-of-followees who have mentioned the
URL. The vote power of a followee-of-followee f is
defined to be proportional to the logarithm of the number of
u ’s followees who follow f , and also proportional to the
logarithm of the average time interval between f ’s
consecutive tweets.

If a URL has never been mentioned by any followee-of-
followees, its vote score is as if it was mentioned by a
single person with the lowest possible voting power.

We refer the vote score computed above simply as Vote.
We pick URLs with high Vote scores as recommendations.

Putting Everything Together
We have described two methods for selecting candidate
URLs, two methods of using topic relevance to rank, and
one method of using social process to rank. We can decide
which method to use in each of those dimensions
separately, and can choose to use no topic relevance or no
social process as well. As a result, there are in total 2
(candidate URLs) x 3 (topic relevance) x 2 (social process)
= 12 possible algorithm designs, as illustrated in Table 1.

Every one of those 12 algorithms follows a paradigm of
“choose and rank” – the system first chooses a candidate
set, and then ranks URLs within the set by a single score. If
we use only topic relevance or social process, then the
ranking score is the output of that dimension alone. If we
use both topic relevance and social process (i.e. Self-Topic
with Vote or Followee-Topic with Vote), we use the
product of the two scores to rank. Finally, if neither is used
(i.e. None with None), we choose URLs randomly from the
candidate set.

We implemented all 2x3x2=12 algorithms in the design
space so that we could compare the algorithms side by side
and investigate the effect of each design choice. Having
formulated the design space, we expand our two research
goals stated in the introduction section into the following
five research questions, thus approaching our research goals
through quantitative studies:

Q1. Do the approaches of ranking using topic relevance
help at all, and if yes, which one is better?
Q2. Does ranking using social voting process help?

CHI 2010: Understanding Comments April 10–15, 2010, Atlanta, GA, USA

1189

Q3. Which source of candidate URLs is better?
Q4. If both topic relevance ranking and social voting
process help, do their benefits complement each other?
Q5. Among all 12 algorithms, which one performs the best?

EMPIRICAL STUDIES
We first conducted pilot interviews to elicit early qualitative
feedback and refine our system design. We then conducted
a controlled field study to gather quantitative results.

Pilot Interviews
We invited a small sample of four active Twitter users in
our research organization to participate in in-person
interviews. Of the four subjects, three were male, one was
female, and all were in their 20s or 30s. Occupations ranged
from full-time employee to contractor to summer intern.

The interview was split into two parts, for a total of 30-60
minutes per subject. In the first part, we asked subjects how
they choose people to follow, how they decide which URLs
to click on when using Twitter, and whether they use
Twitter as a way to track news and current events. In the
second part, we showed subjects the recommendations from
several algorithms, explained the differences in the
algorithms at a very high level (e.g. this algorithm selects
URLs from people you follow and use topic relevance to
recommend, etc.), and asked them to give feedback on a
variety of algorithms.

All interviews were audio-taped and later transcribed. The
first half of the interviews confirmed a number of our key
design intuitions, including those regarding topical
relevance, social voting, and the particular weighting
scheme we used in the social voting process. The second
half of the interview helped shape the UI of the system. The
interviews indicated the trade-off between relevance and
serendipity in recommender design, which we will
elaborate in the discussion section.

Controlled Field Study
We conducted a field experiment on our publicly available
recommender website – zerozero88.com. We publicized the
site as a news recommendation service based on Twitter.

We recruited subjects through word-of-mouth on Twitter,
where we simply asked people to try a new recommender
designed for Twitter users. As such, all subjects were
already Twitter users and none of them were paid. To make
sure that the algorithms had enough data to compute
recommendations, we required subjects to have at least 20
followees and 50 tweets.

We made the recommender service freely available.
However, before qualifying subjects could use the service,
we required them to rate our different recommendation
algorithms for analysis. We also asked subjects to complete
a brief questionnaire focused on the types of news they
track on Twitter.

For each subject, each of the 12 algorithms independently

recommended its five highest-ranked URLs. URLs
recommended by the 12 algorithms were then combined
and randomized. We displayed each URL within a
recommendation widget (Figure 2) which shows the title,
URL address, and up to three tweets that mentioned the
URL to provide context. In choosing the three tweets to
display, we preferred tweets from followees or followee-of-
followees of the subject, if there were any.

Subjects rated each URL as either interesting or not. When
algorithm A and B both recommend the same URL, we
only showed one copy of the URL to the user. The user’s
rating for the URL was then reflected in the scores for both
algorithm A and B, to ensure a fair comparison among all
algorithms.

In the end, in the dataset for the following data analysis,
every one of the 12 algorithms has exactly 5 binary rating
samples per subject, with possible duplicated ratings for
recommendations shared between algorithms. No algorithm
was penalized due to duplication or ordering.

QUANTITATIVE RESULTS
We ran the field experiment for three weeks and collected
results from 44 subjects. Our subjects tracked diverse types
of news on Twitter, including local news, entertainment,
and technology (Figure 3). In total, subjects produced
ratings for 2640 (possibly non-unique) URLs, resulting in a
dataset similar to that illustrated in Table 2.

54.5%
47.7%

38.6%
29.5%

18.2%
6.8%

36.4%
31.8%

4.5%

4.5%
2.3%

11.4%
11.4%

2.3%

90.9%

0% 20% 40% 60% 80% 100%

Local/domestic news
International news

Business/finance/economy
Politics
Sports

Weather
Entertainment

Arts, culture, literature
Tourism/travel tips

Technology/Science
Automobiles
Style/fashion

Cooking/cuisine
Health/medicine
Kids/youth news

Figure 3. Percentages of Field Study Subjects who Use

Twitter to Track Different Types of News

Figure 2. Recommendation Widget on zerozero88.com

CHI 2010: Understanding Comments April 10–15, 2010, Atlanta, GA, USA

1190

In the dataset, each row represents a rating of URL from a
subject. CandidateSet, Ranking-Topic and Ranking-Social
encode the algorithm that generates the URL, and Seq
distinguishes the 5 URLs for a single subject-algorithm
pair. Interest encodes a binary interest rating from the
subject (interested/ not interested), where 1 means that the
subject thought the URL was interesting.

We analyzed our dataset using logistic regression. Logistic
regression uses input variables to predict the probability of
a binary output – in our case, how likely the interest value
would be 1 given a specific algorithm design. For
regression problems with binary outputs as in our case,
logistic regression is superior to commonly used ordinary
linear regression with ANOVA [1].

We use the GENMOD procedure in SAS to perform
logistic regressions in our study [1]. GENMOD has the
ability to model correlated data, which is necessary for our
dataset: URL ratings are nested within subjects and should
thus be assumed correlated. Further, because rating samples
of two algorithms will be identical if both samples are
obtained from the same subject regarding the same URL,
we have introduced additional within-subject correlation to
the dataset. GENMOD can estimate significance of factors
using either Wald tests or score tests. The two kinds of tests
agreed qualitatively throughout our study, and as a result
we report only Wald test results.

Research Question 1, 2 and 3: Main Effects
To answer questions 1, 2, and 3, we build Model 1, which
predicts the probability of Interest being 1 (the subject
being interested in the URL) using CandidateSet, Ranking-
Topic and Ranking-Social as factors. This regression tells
us whether the probability of generating interesting URLs
would change significantly if we change our choice on one
design dimension, such as changing the way of selecting
candidate sets from Popular to FoF, or changing the way of
ranking by topic relevance from None to Self-Topic.

In Model 1, we found a significant increase in the
probability when changing Ranking-Topic from None to
Self-Topic (beta=0.58, Z=4.95, p<.001), and to Followee-
Topic (beta=0.27, Z=2.48, p=.01). The increase from Self-
Topic is larger than from Followee-Topic (0.58 vs. 0.27),
and this difference is significant (Chi-sq(1)=14.89, p<.001).
These results answer Q1: Both ways of ranking URLs using
topic relevance help, and using Self-Topic works better
than using Followee-Topic.

We also observed a significant increase in the probability

when changing Rank-Social from None to Vote (beta=1.02,
Z=6.53, p<.001). This answers Q2: Using social voting
process indeed helps.

We observed an increase in the probability when changing
CandidateSet from Popular to FoF; the increase evinced a
trend but was not significant (beta=0.22, Z=1.78, p=.08).
This answers question 3: FoF might be working better than
Popular.

Research Question 4: Interaction Effects
To answer question 4, we built Model 2 by adding an
interaction term between Ranking-Topic and Ranking-
Social into Model 1. Model 2 can tell us whether the
increase caused by using a topic relevance approach is
dependent on whether social voting is used or not. With the
interaction effect added, the estimated beta coefficients of
other factors in Model 2 varied from Model 1, but no
change in sign or level of significance happened.

We observed in Model 2 a significant negative interaction
effect for both Self-Topic * Vote (beta= -0.76, Z= -4.04,
p<.001) and Followee-Topic * Vote (beta= -0.39, Z= -2.19,
p=.03). This indicates a diminished return between each
pair of combinations, i.e. the benefits by having both topic
relevance ranking and social voting process are smaller than
the sum of the benefits they have individually.

We can quantitatively estimate the degree in which the
benefit diminishes from beta values in Model 2. All beta
values in logistic regressions can be transformed into odds-
ratio effects, i.e. how much more likely the algorithm would
produce interesting URLs than non-interesting ones.

For example, in Model 2 the beta of Vote for Ranking-
Social is 1.40, which means that adding social voting
process alone has an odds-ratio of exp(1.40) = 4.06, i.e. the
system is 4.06 times likely than before to generate
interesting URLs than non-interesting ones. Similarly, using
Self-Topic ranking alone has an odds-ratio of 2.59.

However, when we combine Self-Topic with Vote, because
the two have a significant interaction effect of odds-ratio
exp(-0.76) = 0.47, the combined odds-ratio is 4.06 * 2.59 *
0.47 = 4.94, instead of 4.06 * 2.59 = 10.52 if the two were
independent. In terms of odds-ratio, a Self-Topic plus Vote
combo is 90% better than using Self-Topic alone and 22%
better than using Vote alone.

Repeating the above process between Vote and Followee-
Topic in Model 2, we found that their combined odds-ratio
is 4.06 * 1.60 * 0.68 = 4.41. Given that the odds-ratio of
Vote alone is already 4.06, adding Followee-Topic on top
of Vote provides less than 10% additional benefit in the
odds-ratio of recommending interesting URLs.

Research Question 5: Best Performing Algorithm
To answer question 5, we built Model 3, which predicts the
probability of interest using CandidateSet, Rank-Topic and
Rank-Social combined as a single factor. This allows us to
compare all 12 algorithms individually side by side.

Subject Candidate
Set

Ranking-
Topic

Ranking-
Social Seq Interest

Alice FoF Self-Topic Vote 1 1

Alice FoF Self-Topic Vote 2 0

Bob Popular None None 5 0

Table 2. Format of Dataset Gathered in Controlled Field Study

CHI 2010: Understanding Comments April 10–15, 2010, Atlanta, GA, USA

1191

The result from Model 3 suggests that the combination of
FoF on CandidateSet, Self-Topic on Ranking-Topic and
Vote on Ranking-Social has the highest probability of
producing interesting URLs. Using p-value < 0.05 as the
cut-off, this algorithm is statistically indistinguishable from
Popular-Self-Vote, FoF-Followee-Vote, Popular-Followee-
Vote and Popular-None-Vote. Nevertheless, it is
significantly better than the other 7 algorithms.

Figure 4 illustrates this result by showing the percentage of
interesting URLs produced by each of the 12 algorithms.
DISCUSSION
Understanding the Effectiveness of Our Approach
We summarize our results qualitatively in Table 3. We have
found favorable results regarding the effectiveness of
recommenders. In the best performing algorithm, our
Twitter recommender can provide up to 72% interesting
items. Modeling the topic interest of users and leveraging a
social voting process were both beneficial for
recommending URLs on Twitter.

The degree of such benefits can be understood more
intuitively from several reference points in Figure 4. For
example, Popular-None-None recommends URLs randomly
from most popular URLs on Twitter. Looking at its

recommendations would be close to looking at the front
page of a popular URL aggregator such as Tweetmeme. As
Figure 4 suggests, on average the chance that a URL there
would be interesting is 32.5%.

Likewise, looking at URLs recommended by FoF-None-
None is more or less similar to scanning one’s own stream
and streams of followees. There is a 33.0% chance that a
URL in there would be interesting to read.

Using ranking algorithms can greatly increase this chance.
Generally speaking, all of the Vote-based algorithms
outperformed non-Vote-based algorithms. The best
performing algorithm using only topic relevance ranking is
FoF-Self-None, which improves the chance to 61.1%.

The best performing algorithm overall is FoF-Self-Vote. It
recommends interesting URLs 72.1% of the time, more
than doubling the chance compared to cases where no
ranking is performed.

We also examined transcriptions from the interview study
and found explanations for improvements from the user’s
point of view. For example, with respect to Social Voting,
one participant reported: “The fact that a few different
people retweet it may make it more likely [to be
interesting.]” In this case, the interviewee is following the
tweets of others, and he particularly pays attention when
multiple others in his stream are agreeing.

Generalizability of Our Approach
We believe that our algorithms are general enough that they
can function and provide benefits not only in Twitter but
also in other information streams, because fundamentally
the algorithms assume little that is specific to Twitter: (1)
Our model of topic interest is widely used in other domains,
and only requires that users or their friends send and receive
text updates. (2) Our social voting process requires explicit
social interaction between users, which is present in many
different types of online services. (3) While in this study we
recommend URLs in particular, we did not use the content
of the pages at the URL. As such, our techniques can be
used to recommend other content, such as images or videos.
Therefore, one can adapt our system to recommend photos
on Facebook or news stories on Google Reader.

69.30%

68.84%

67.91%

67.74%

65.58%

61.11%

53.05%

51.17%

35.38%

33.00%

32.50%

72.09%

0% 10% 20% 30% 40% 50% 60% 70%

FoF-Self-Vote

Popular-Self-Vote

FoF-Followee-Vote

Popular-Followee-Vote

Popular-None-Vote

FoF-None-Vote

FoF-Self-None

FoF-Followee-None

Popular-Self-None

Popular-Followee-None

FoF-None-None

Popular-None-None

Figure 4. Percentage of Interesting URLs Recommended

per Algorithm. FoF-Self-Vote at the bottom is
significantly better than the top 7 algorithms in the list

Q# Research Question Answer

1 Is the Topic relevance helpful? Yes, and Self-Topic (relevance to one’s own tweets) is significantly better than
Followee-Topic (relevance to followees’ tweets).

2 Is the Social voting process helpful? Yes.

3 How to selecting candidate set? FoF (followee-of-followees) seems to be a bit better than Popular, but the
difference is not significant.

4 How well topic relevance ranking and
social voting process work together?

There is a diminishing return when combining the two approaches. Social
voting is the biggest contributor in itself. On top of that, Self-Topic adds 22%,
and Followee-Topic adds less than 10%.

5 Which algorithm seems best?
The best performing algorithm is FoF-Self-Vote (This algorithm selects URLs
posted by followee-of-followees, and ranks them by both relevance to user’s
own tweets and social voting).

Table 3. Summary of Quantitative Results of the Controlled Field Study

CHI 2010: Understanding Comments April 10–15, 2010, Atlanta, GA, USA

1192

Moving away from Web 2.0 websites, if members of an
open source project use RSS feeds to track their work and
send each other messages for coordination, our system can
recommend them work items and bug reports. As another
example, if we view emails sent over time as streams and
view sending and receiving email as social interaction, we
can adapt our system to recommend useful tips, proposals
and meeting calls within an enterprise email system.

However, we would like to caution designers that, in other
domains, the degree of benefits from algorithms might vary
dramatically from this study. For example, in our study we
found modeling user interests as information producers
(Self-Topic) being superior to modeling their interests as
information seekers (Followee-Topic). This result may be
due to many Twitter users producing information actively
but not following a coherent set of people with a single
interest. If this were true, it would provide reliable
information to the producer model and make the seeker
model noisy. In other domains, the user behavior may be
different and yield different results.

As another example, our social voting process assumes
people subscribing to stream of a user based on how
valuable the user is as an information source. Therefore, its
results may become inferior in other domains where the
semantics of subscription is different. For instance, in
Facebook, subscribing to one’s status updates is more likely
due to friendship than to expected information value, so
Facebook recommenders might benefit more by leveraging
tie-strength instead of a voting process.

Distinguishing Algorithms: Relevance vs. Serendipity
We found no significant difference between the two ways
of selecting candidate URL sets. Comparing the 12
algorithms individually, we found the bottom five
algorithms in Figure 4 to be statistically indistinguishable
from each other. However, this does not necessarily mean
that those algorithms are the same, because the needs of
users can be much more nuanced than what can be
expressed in a simple binary rating.

Indeed, several subjects in our interviews mentioned a key
distinguishing factor that they care about – whether the
algorithm provides more relevance or serendipity. For
example, one participant expressed that she wanted
affirmation of what is already known or familiar as opposed
to discovery of new or contrary ideas: “There is a tension
between the discovery and the affirming aspect of things. I
am getting tweets about things that I am already interested
in. Something I crave when I am in a recommendation
environment, where something is filtered, or brought to the
surface, is an element of surprise or whimsy. That's one of
the things I love about Twitter. Because in the RSS feeds
you self-select things to get. I am getting a lot of things I
am interested in, but that is not necessarily a good thing for
me personally”; and she goes on to say, “I am also very
interested when people take the opposite point of view from
the ‘mainstream’.”

Almost every design choice inevitably moves the system
towards either relevance or serendipity. For example, in our
design, URLs from the local neighborhood (as in the FoF
candidate set) are more similar to what users already see in
their own streams, while global popular URLs (as in the
Popular candidate set) may contain more surprises.
Modeling interest using commonly used words in the local
neighborhood (as in Followee-Topic) and using local social
voting (as in Vote) both make recommendations relevant to
locally prevalent interests, but rule out minority ideas.
Finally, modeling interest using words that the user tweets
about (as in Self-Topic) promotes content relevant to one’s
previous speech and buries everything else.

Because users care about the balance between relevance
and serendipity, designers may want to research the
preferences of users to tune the recommender accordingly.
However, having such knowledge beforehand may be hard
because preferences vary between users.

First, the user’s preference may depend on the volume of
the incoming stream. Some users already receive too much
to read in their own stream, so that they want to filter away
everything except the most relevant pieces. Other users may
be more skilled at keeping up with their stream and thus
value serendipity more. For example, among the four
interview participants, the one with the highest number of
followees and heaviest incoming tweet volume is the only
one who uses third-party tools to filter his stream. In
contrast, another participant only follows a few friends, has
time to read every single tweet he receives and has no need
for filtering at all. Instead, he finds random popular URLs
in our system quite interesting to read.

Second, the user’s opinion may depend on how he or she
uses Twitter in comparison to alternative channels. Some
users receive news solely through Twitter, and thus want
more random discovery, while for others Twitter may serve
a very specific information need, such as keeping up with
current HCI research. One participant described, “[I am not
interested] because those are just general news that I
probably follow in some other way and I don't need to come
to Twitter.” Another concurred, saying “I am pretty good at
finding articles I like to read already” – he feels less of a
need for a recommender service.

Third, users’ preferences may depend on the context in
which information is received. For example, while at work
a user may be very task-focused and only read information
relevant to his or her job. But, at home that same user may
be willing to entertain much broader interests, including
YouTube videos completely unrelated to work. One of our
interview participant remarked: “There are tweets that I am
personally interested in and tweets that I have for
information gathering and documentation and
recordkeeping purposes.” Similarly, another said: “There
are situations where I would look for entertaining [URLs].”

One way to solve the problem without prior knowledge of
user preference may be constructing a recommender using

CHI 2010: Understanding Comments April 10–15, 2010, Atlanta, GA, USA

1193

many algorithms spreading over the spectrum of relevance
vs. serendipity. The system gathers user feedback, and over
time learns whether each user prefers algorithms that better
support relevance or those that better support serendipity.
Then for each user, the system uses a personalized subset of
algorithms that the user prefers the most. The system may
even learn preference changes and adapt accordingly, such
as supporting more relevance at work and supporting more
serendipity at home. In fact, zerozero88.com already uses a
simple version of this idea: After users have rated
recommendations from all algorithms in the sign-up
process, they will receive more recommendations from
algorithms they have rated high and fewer from algorithms
they have rated low.

CONCLUSION AND FUTURE DIRECTIONS
In this paper we studied URL recommendation on Twitter
as a means to better direct user attention in information
streams. We implemented 12 algorithms in the design space
we formulated, and through a controlled field study of 44
Twitter users demonstrated that both topic relevance and
the social voting process were helpful in providing
recommendations.

As mentioned earlier, while our algorithms are general and
can be directly applied to many other information streams,
domain-specific properties may have great impact on the
effectiveness of these algorithms. Future research may
explore other domains so as to deepen our understanding in
the design space to finer details, add more design options,
or add completely new dimensions to the design space.

The issue of serendipity has been raised in both web search
[3] and recommender systems [11]. However, we are aware
of little research in how this issue plays out in information
stream recommenders. Further research in serendipity in
this context may bring information stream users much
richer experiences than they have now.

REFERENCES
1. Allison, P.D. 1999. Logistic regression using the SAS

system: theory and application. SAS Institute.
2. Andersen, R., Borgs, C., Chayes, J., Feige, U., Flaxman,

A., Kalai, A., Mirrokni, V., and Tennenholtz, M. 2008.
Trust-based recommendation systems: an axiomatic
approach. In Proc of WWW ‘08.

3. André, P., Teevan, J., and Dumais, S. T. 2009. From x-
rays to silly putty via Uranus: serendipity and its role in
web search. In Proc of CHI '09.

4. Balabanović, M. and Shoham, Y. 1997. Fab: content-
based, collaborative recommendation. Commun. ACM
40, 3 (Mar. 1997), 66-72.

5. Chen, J., Geyer, W., Dugan, C., Muller, M., and Guy, I.
2009. Make new friends, but keep the old:
recommending people on social networking sites. In
Proc of CHI ‘09.

6. Das, A.S., Datar, M., Garg, A., and Rajaram, S. 2007.
Google news personalization: scalable online
collaborative filtering. In Proc of WWW ‘07.

7. Geyer, W., Dugan, C., Millen, D., Muller, M., Freyne, J.
2008. Recommending Topics for Self-Descriptions in
Online User Profiles. In Proc of ACM RecSys’08.

8. Hill, W. and Terveen, L. 1996. Using frequency-of-
mention in public conversations for social filtering. In
Proc of CSCW ’96.

9. Java, A., Song, X., Finin, T., and Tseng, B. 2007. Why
we twitter: understanding microblogging usage and
communities. In Proc of the 9th WebKDD and 1st SNA-
KDD 2007 Workshop on Web Mining and Social
Network Analysis, 56-65.

10. Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L.,
Gordon, L. R., and Riedl, J. 1997. GroupLens: applying
collaborative filtering to Usenet news. Commun. ACM
40, 3 (Mar. 1997), 77-87.

11. McNee, S. M., Riedl, J., and Konstan, J. A. 2006. Being
accurate is not enough: how accuracy metrics have hurt
recommender systems. In CHI '06 Extended Abstracts.

12. Melville, P., Mooney, R. J. and Nagarajan, R. 2001.
Content-boosted collaborative filtering. In Proc of 2001
SIGIR Workshop on Recommender Systems.

13. Mooney, R.J., and Roy, L. 2000. Content-based book
recommending using learning for text categorization. In
Proc of ACM DL’00.195–204.

14. Pazzani, M.J., Muramatsu, J. and Billsus, D. 1996.
Syskill & webert: Identifying interesting web sites.
AAAI/IAAI, Vol. 1, 54-61.

15. Rashid, A.M., Lam, S.K., Karypis, G., Riedl, J. 2006.
ClustKNN: A highly scalable hybrid model- & memory-
based CF algorithm. In Proc of WebKDD’06: KDD
Workshop on Web Mining and Web Usage Analysis.

16. Sahami, M. and Heilman, T.D. 2006. A web-based
kernel function for measuring the similarity of short text
snippets. In Proc of WWW '06.

17. Salton, G & Buckley, C. 1988. Term-weighting
approaches in automatic text retrieval. Information
Processing & Management 24 (5): 513-523.

18. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.
2002. Recommender systems for large-scale E-
Commerce: Scalable neighborhood formation using
clustering. In Proc of ICCIT 2002.

19. Schein, A.I., Popescul, A., Ungar, L.H., and Pennock,
D.M. 2002. Methods and metrics for cold-start
recommendations. In Proc of SIGIR '02.

20. Simon, H.A. 1971. Designing Organizations for an
Information-Rich World. Computers, Communications,
and the Public Interest (1971), pp. 37-72.

CHI 2010: Understanding Comments April 10–15, 2010, Atlanta, GA, USA

1194

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

