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ABSTRACT 
Current chasms between applications implemented with 
different user interface toolkits make it difficult to implement 
and explore potentially important interaction techniques in 
new and existing applications, limiting the progress and 
impact of human-computer interaction research. We examine 
an approach based in the single most common characteristic 
of all graphical user interface toolkits, that they ultimately 
paint pixels to a display. We present Prefab, a system for 
implementing advanced behaviors through the reverse 
engineering of the pixels in graphical interfaces. Informed by 
how user interface toolkits paint interfaces, Prefab features a 
separation of the modeling of widget layout from the 
recognition of widget appearance. We validate Prefab in 
implementations of three applications: target-aware pointing 
techniques, Phosphor transitions, and Side Views parameter 
spectrums. Working only from pixels, we demonstrate a 
single implementation of these enhancements in complex 
existing applications created in different user interface 
toolkits running on different windowing systems. 
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INTRODUCTION AND MOTIVATION 
Nearly every modern graphical interface is implemented 
using some form of user interface toolkit. These toolkits 
provide libraries of widgets and associated frameworks that 
reduce the time, effort, and amount of code required to 
implement an interface. This provides obvious advantages 
to developers, but also benefits the users of applications 
created with these toolkits. For example, the consistent look 
and feel of applications created with a toolkit allows people 
to better transfer skills between those applications. Easier 
interface development also enables the iterative exploration 
of a greater variety of potential designs, which is critical to 
successful iterative design processes. User interface toolkits 

have enabled many successes in the past forty years of 
human-computer interaction research and practice [12]. 

Unfortunately, the current state of user interface toolkits 
also creates significant challenges for research and practice. 
When working with an existing toolkit, it is generally 
difficult or impossible to modify the core behavior of that 
toolkit’s widgets [6]. A researcher who wants to study a 
new interaction technique in the context of rich and realistic 
applications, or a practitioner who wants to adopt a 
technique from the literature, is generally faced with the 
prospect of re-implementing huge portions of a toolkit or an 
application. Most instead choose to demonstrate techniques 
only in toy applications or to develop applications based in 
simple combinations of standard widgets [6]. This problem 
is magnified by the fact people typically use a wide variety 
of applications built with several different toolkits. Each is 
implemented differently, and so it is difficult to consistently 
add new functionality. For example, target-aware pointing 
techniques have long been known to have many potential 
advantages [3, 24], but the diversity of implementations of 
existing applications and toolkits continues to limit their 
broader exploration and adoption. The difficulty of 
implementing new interaction techniques in new and 
existing applications and toolkits is limiting the progress 
and impact of human-computer interaction research. 

This paper explores an approach based on the single largest 
commonality of this variety of applications and toolkits: 
they all ultimately produce pixels on a display. If it were 
possible to interpret the structure of these pixels, a variety 
of advanced behaviors might be implemented independent 
of individual applications and toolkits. Our Prefab system 
examines Pixel-based Reverse Engineering For Advanced 
Behaviors, and builds upon four fundamental insights: 
• The graphical desktop is not a physical scene. Computer 

vision algorithms developed to address such problems as 
perspective, distortion, shadows, and occlusion may be 
overkill or even inappropriate for this problem. 

• Because the pixels constituting a particular widget are 
defined procedurally, those pixels are typically identical 
across invocations of an application on the same or 
different computers. If a system can be taught the 
definition of a particular widget, it will rarely change. 

• Because consistency within an application is important 
to the usability of that application, widgets of the same 
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type are typically illustrated using similar pixels. It is 
likely not necessary to individually define each widget 
in every application, but may instead be possible to 
learn definitions of entire families of widgets (e.g., all 
Microsoft Windows Vista Steel buttons, all Java Metal 
checkboxes, all Apple Cocoa scrollbars). 

• Because consistency across applications is important to 
the usability and learnability of applications, different 
toolkits provide similar sets of widgets that share many 
commonalities (e.g., buttons, checkboxes, scrollbars). 
Modeling these commonalities, based in part on how 
such toolkits are implemented, is likely to be important 
to pixel-based reverse engineering of interface structure. 

In short, graphical desktops are not physical scenes, but are 
instead made of pre-fabricated units combined according to 
very particular rules. Prefab uses raw pixels to reverse 
engineer interface structure by identifying these 
pre-fabricated units and then modeling their relations.  

Figure 1 presents several examples of advanced behaviors 
implemented using Prefab. These examples are embedded 
in a variety of applications implemented using different 
toolkits running on different platforms. All are implemented 
entirely based upon reverse engineering pixels, without 
knowledge of the underlying toolkit or implementation. 

The next section provides a brief description of how 
Prefab’s interpretations can be used to implement advanced 
behaviors like those in Figure 1. We then provide an 
introduction to each of Prefab’s major components and 
describe their relationships. Next, we introduce two Prefab 
models that we use as examples throughout this paper. In 
the main portion of our technical content, we first present 
how Prefab uses a library of prototypes to reverse engineer 

a graphical interface. We then present our current support 
for creating the necessary library. We next validate Prefab 
in three example applications and then discuss related work. 
Finally, we discuss Prefab, its current limitations, and 
opportunities for future work. 

The specific contributions of this work are: 
• An architecture for pixel-based reverse engineering of 

interface structure. Informed by how user interface 
toolkits paint interfaces, our architecture features a 
separation of the modeling of widget layout from the 
recognition of widget appearance. 

• Initial methods for effectively implementing necessary 
components of this architecture and discussion of 
opportunities to improve and extend these methods. 

• Initial methods supporting the creation of Prefab 
prototype libraries, including a branch-and-bound 
method for fitting prototype parameters according to 
positive and negative examples of occurrences. 

• A tool that enables a wide variety of applications using 
pixel-based reverse engineering of interface structure. 

INPUT AND OUTPUT REDIRECTION 
The examples in this paper are based on modifying the 
apparent behavior of interfaces using input and output 
redirection. A basic mechanism is illustrated in Figure 2, 
wherein (1) a bitmap of an existing source window is 
captured, (2) the contents of the source are interpreted, (3) a 
modified interface is presented in a target window (with the 
source potentially hidden using virtual desktop methods), 
(4) input in the target is mapped back the source, which 
then (5) generates new output that is captured and used to 
update the target. We discuss prior redirection research in a 

 

 
Grossman and Balakrishnan’s Bubble Cursor is an 
important target-aware pointing technique [3], but 
is difficult to deploy because existing toolkits do 
not support it. These are screenshots of a Bubble 
Cursor implemented using Prefab, highlighting the 
nearest target in a Firefox settings dialog on 
Macintosh OS X and in a YouTube movie player. 

 

 
Baudisch et al.’s Phosphor uses afterglows to illustrate interface changes [1]. This 
screenshot of our Prefab implementation of Phosphor shows a recently unchecked checkbox 
and a recently manipulated slider in an iTunes settings dialog on an Apple Macintosh. 

 
Terry and Mynatt show that Side Views parameter spectrums can support effective 
exploration of multi-parameter spaces [22]. We use Prefab to create a parameter spectrum 
for an Adobe Photoshop filter running on Microsoft Windows Vista. We populate the 
spectrum by using Prefab to automatically interpret the interface of Photoshop’s filter dialog. 

Figure 1: Prefab reverse engineers raw pixels to recover the structure of graphical user interfaces. Because Prefab is agnostic of 
an application’s underlying implementation, it enables advanced behaviors across a wide variety of applications and toolkits. 
All of these demonstrations of Prefab enhancements are discussed in greater detail later in this paper and in our associated video. 
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later section [11, 20, 21], but our research is the first to 
combine redirection with pixel-based interpretation of 
interfaces. The types of modifications that are possible with 
these mechanisms depend upon the completeness of the 
available interpretation, so this paper focuses on Prefab’s 
methods for identifying widgets many times per second. 
Our later discussion provides more insight into our example 
applications, current limitations, and applications that could 
be enabled by further improvements to Prefab. 

PREFAB COMPONENT OVERVIEW 
The major components of Prefab’s architecture are: models, 
prototypes, parts (including features and regions), 
constraints, and transitions. This section briefly introduces 
each component so that future sections can provide a 
detailed discussion of their usage and relationships. 

A model consists of a set of abstract parts and a set of 
concrete constraints regarding those parts. A typical model, 
for example, might include several constraints requiring 
that particular parts are adjacent. The parts of a model are 
abstract, and so a model does not describe any particular 
widget or set of widgets. Instead, a model describes a 
pattern for composing a set of parts to create a widget. 

Parts can be either features or regions. A feature stores an 
exact patch of pixels (exact colors in a spatial arrangement 
of an exact size). For reasons that are obvious when we 
discuss how Prefab reverse engineers a particular interface, 
every model includes at least one feature. A region stores a 
procedural definition of a method for generating a set of 
pixels in an area of variable size (e.g., painting a repeating 
pattern, painting a gradient). Because the same parts can be 
arranged in many different ways, they alone do not describe 
any particular widget or set of widgets. 

A prototype parameterizes a model with concrete parts, 
characterizing both the appearance of a set of parts and 
applicable constraints upon the relationships of those parts. 
A prototype therefore describes the appearance of a 
particular widget or set of widgets (e.g., the Mozilla Firefox 
Home toolbar button, all Microsoft Windows Vista Steel 
buttons). Prefab is implemented as a library of prototypes, 
together with methods for effectively applying those 
prototypes to identify occurrences of widgets. 

The separation of layout (described by a model) from 
appearance (when parts are specified to create a prototype) 
is critical to Prefab and is informed by important aspects of 
how toolkits paint widgets. For example, to support widgets 
with content of varying sizes, toolkits often paint a border 
of the required size (delimiting space dedicated to a widget) 
and then paint the content of the widget within that border 
(e.g., centering a label or an icon within a button, displaying 
the current value of an editable text field). Similarly, a 
slider widget paints a trough and a thumb, regardless of the 
underlying toolkit. Prefab separates such general insight 
about how widgets are drawn from details of the 
appearance of individual widgets (e.g., the stroke used to 
paint a border, the shape of a slider’s thumb). For example, 
a model of eight parts creating a rectangular border is 
capable of describing a wide variety of widgets. 

Prefab’s final major component is a transition. Although 
many potential applications of Prefab can be based on 
reverse engineering a single frame or state of an interface, 
many others require interpreting the contents of an interface 
across multiple frames or states. A Prefab transition is 
defined as a pair of prototypes and a set of constraints that 
specify when the transition is allowable. When an 
occurrence of the first prototype is observed, Prefab begins 
tracking the transition. If an occurrence of the second 
prototype is observed that is compatible with the specified 
constraints, the transition is fired.  

TWO EXAMPLE MODELS 
The next two sections discuss the use and creation of a 
library of Prefab prototypes, consistently using two 
example models: a one-part model and an eight-part model. 
Prefab is an extensible system, and these were selected to 
provide insight into extension by illustrating the opposite 
extremes of complexity in our current models.  

The one-part model is our simplest, consisting of only a 
single feature. A prototype specifies a single exact patch of 
pixels, and Prefab identifies occurrences whenever it 
observes those exact pixels. This model might appear to be 
a strawman, but our experiences suggest that it can be quite 

 
Figure 3: This Prefab prototype for Microsoft Windows 
Vista Steel buttons is an example of an eight-part model. 
Four features define the corners, each edge is defined by a 
region, and constraints require the parts form a rectangle. 
This prototype recognizes all Microsoft Windows Vista 
Steel buttons, independent of their interior content. 

 
Figure 2: Redirection mechanisms allow modification of 
the apparent behavior of interfaces through modification 
of their input and output. Prefab provides a unique 
approach to rapid pixel-based interpretation of interfaces.  
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effective at supporting widgets for which there is not yet a 
more specialized model (with the obvious limitation that it 
does not generalize across families of widgets). 

The eight-part model is illustrated in Figure 3 with its parts 
parameterized by the appearance of the Microsoft Windows 
Vista Steel button. Features define the corners, a region 
defines each edge, and constraints require the parts form a 
rectangle. This prototype’s edges are a single repeating 
pixel, but other region types are possible (e.g., a repeating 
sequence, a repeating multi-row pattern, a gradient). 

REVERSE ENGINEERING AN INTERFACE 
Our goal is to identify all occurrences of widgets from our 
prototype library in an image of an interface. To support 
real-time interactive enhancements of interfaces, we want to 
do this many times per second. Because the graphical 
desktop is not a physical scene, and because we need to 
identify many widgets many times per second, techniques 
developed in computer vision are a poor fit for our problem. 
For example, Yeh et al.’s recently developed Sikuli system 
uses a combination of template matching and voting based 
on invariant local features, and it requires a reported 
200msec to identify all occurrences of a single target [25]. 
Because we need to more quickly identify all occurrences 
of many widgets, we develop an approach tailored to the 
recognition of widgets in images of graphical interfaces. 

Prefab first conducts a single pass over an image to identify 
all occurrences of features from the prototype library. 
Based on the detected features, models generate hypotheses 
regarding potential occurrences. Actual occurrences are 
detected by filtering these according to the constraints of 
the relevant model, including checking the validity of pixels 
in any regions. After identifying occurrences of prototypes 
in the current image, Prefab determines whether any 
relevant transitions have occurred and updates its set of 
transitions that are potentially in progress. For the sake of 
clarity, this section presents each step in its simplest form, 
using our one-part and eight-part models as examples. In 
our later discussion, we note several aspects of the process 
presented here that can be optimized for performance. 

Locating Features 
When a library of prototypes is created, Prefab chooses a 
non-transparent hotspot within the patch of pixels defining 
each feature in the library. Prefab constructs a decision tree 
for determining whether a pixel in an image of an interface 
is the hotspot of any feature in the tree, as in Figure 4. Each 
internal node specifies an offset relative to the hotspot, each 
edge corresponds to the color at that offset, and each leaf 
corresponds to a feature. Traversing the tree to a leaf tests 
every pixel in a feature (e.g., the leftmost path in Figure 4 
tests the dark grey pixel, then the blue pixel, then the light 
grey, and finally the yellow pixel). If an internal node lacks 
an edge corresponding to the color at the specified offset, 
then traversal ends and the pixel to which the tree is 
currently being applied is not the hotspot of any feature. 
This decision tree is stored in the library and evaluated 
against images of interfaces to locate features at runtime. 

The hotspot for each feature and the offset at each internal 
node can be chosen arbitrarily, but simple heuristics 
improve performance. Our implementation currently first 
tests the non-transparent hotspot (a transparent pixel within 
a feature indicates the color of that pixel is irrelevant to the 
feature), then chooses the offset for each internal node that 
maximizes information gain. When choosing a hotspot for 
each feature in the prototype library, our implementation 
chooses a pixel of a color that is least common among all 
features in the prototype library (using the distribution of 
colors in the features as a proxy for the distribution of 
colors in interfaces). These heuristics combine to minimize 
the tree depth and the length of typical partial traversals.  

Generating Hypotheses 
After identifying all feature occurrences, each Prefab model 
generates hypotheses of potential prototype occurrences. 
Importantly, the overwhelming majority of prototypes in 
the library have already been removed from consideration. 
Every model contains at least one feature, and Prefab has 
identified all occurrences of all features, so any prototype 
that includes features which have not been detected cannot 
appear in the current image. 

Hypotheses for one-part prototypes are trivial to generate. 
Because the one-part model consists of a single feature, a 
single hypothesis for a one-part prototype is generated at 
each location in the image where that feature occurs. 

A naïve but sufficient general method is for a model to 
enumerate all mappings between a prototype’s features and 
occurrences of those features in an image. For example, a 
model that contains k features, each of which occurs f times 
in a particular image, could generate f k unique hypotheses. 

Prefab models can apply constraints to generate a much 
smaller set of hypotheses. For our eight-part model, its four 
features are constrained to a rectangle. The model therefore 
generates hypotheses by starting from each occurrence of a 
prototype’s top-left feature, checking to the right for the 
top-right feature, then down for the bottom-right feature, 
left for the bottom-left feature, and finally confirming the 

 
Figure 4: Prefab constructs a decision tree that tests 
whether a pixel is the hotspot of a feature from the 
prototype library. It uses this tree to scan an image of an 
interface, detecting all features in a single pass. 
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bottom-left feature is directly below the top-left feature. 
The number of arrangements considered and the number of 
hypotheses generated are both far less than the naïve f k. We 
have found it relatively easy to implement such methods for 
efficiently generating small sets of high-quality hypotheses, 
but more importantly we note that they are implemented in 
the model and therefore shared by many prototypes. Even if 
it were relatively difficult to implement an efficient method 
for generating good hypotheses in a particular model, we 
believe this effort would be justified if the model could then 
be applied to a large and wide variety of prototypes. 

Detecting Prototype Occurrences 
After generating a set of hypotheses, actual occurrences are 
detected by filtering hypotheses according to the constraints 
of the relevant model, including checking the validity of 
pixels in any regions. Hypotheses that pass these filters are 
reported to applications as prototype occurrences. 

Prefab’s models can use arbitrary code for constraints 
before or after region validation. In our current models, we 
have found the combination of constraints on feature 
arrangement during hypothesis generation and validation of 
region pixels to be sufficient and effective. Prefab’s support 
of arbitrarily logic for filtering hypotheses may prove useful 
in future extensions with additional models. 

During region validation, models identify sets of pixels to 
be validated and delegate validation to the region object. In 
our eight-part model, for example, a hypothesis defines the 
locations of the four corner features. Based on these, the 
model defines four sets of pixels corresponding to the top, 
right, bottom, and left edges. It then delegates validation of 
each set of pixels to the region objects in the prototype 
being tested. For the Microsoft Windows Vista Steel button 
prototype from Figure 3, the region validates the presence 
of the single repeating pixel along the edge. Different types 
of regions (e.g., a repeating sequence, a repeating multi-row 
pattern, a gradient) take their own approaches to validating 

pixels delegated to them by the model. If the region rejects 
the pixels, the model rejects the current hypothesis. 

Monitoring Transitions 
Prefab applications can be based entirely upon notifications 
of prototype occurrences, but we have found that many 
potential applications require observation of a transition 
from one prototype to another. We therefore added explicit 
support for observing such transitions with Prefab. Each 
transition is defined by a prototype whose occurrence 
initiates monitoring of the potential transition, a prototype 
whose occurrence indicates it may be appropriate to trigger 
the transition notification, and a set of constraints 
(including both support for arbitrary logic and pre-packaged 
versions of commonly used constraints, such as timeouts). 

Prefab maintains a set of transitions that are potentially in 
progress. After determining which prototypes occur in the 
current frame (and reporting them to applications), Prefab 
checks for transitions that are potentially in progress and 
could be triggered by an occurrence in the current frame. 
These are given the option of triggering, subject to their 
constraints. All transitions in the set are then given the 
option to expire (separating triggering from expiration 
allows transitions that trigger and then expire, expire 
without triggering, or trigger multiple times before 
expiring). Finally, the current occurrences are examined for 
prototypes that could initiate a transition and those 
transitions are added to the set potentially in progress. 

SUPPORTING PREFAB PROTOTYPE CREATION 
There are a range of approaches to developing libraries of 
prototypes required for Prefab applications. A researcher 
evaluating an interaction technique in a set of existing 
applications might create a prototype library for the widgets 
used in those applications. A practitioner or hobbyist who 
wants to use a Prefab enhancement with their favorite 
application might create the necessary library and share it 
with other users of the application. Communities might 
create and maintain large shared libraries, perhaps using 
wiki functionality like that developed for web mashups with 
d.Mix [4]. Explicit specification might be enhanced with 
automated learning of prototypes through passive 
observation of people using everyday interfaces. We are 
ultimately interested in all of these possibilities, but this 
initial work focuses on a common first requirement: 
supporting effective creation of Prefab prototypes.  

It is possible to manually specify the parameters of a model 
corresponding to a particular widget or family of widgets, 
but such a process is tedious and is also likely to introduce 
errors. We therefore develop methods for the lightweight 
interactive specification of Prefab prototypes based on 
positive and negative examples (examples of widgets that a 
prototype should or should not identify). Our goal is not 
necessarily complete automation of example-based 
prototype creation, as we do not believe this is necessary 
for supporting the effective creation of prototype libraries. 
Instead, we believe it is sufficient to reduce the required 
effort to a small number of clicks. For example, a person 

 

Three occurrences of the same
eight-part prototype, with their
total of 12 features identified. 

 

The correct hypotheses are all detected. 

 

This combination never generates a hypothesis. 
Its upper-right feature (bottom-right of the “A” 
occurrence) is not the prototype’s required type. 

 

This combination includes all four required 
features, but fails the model’s rectangle 
constraint and never generates a hypothesis. 

 
This combination includes correct features in 
a valid layout, but the gap between buttons is 
inconsistent with the repeating edge region.  

Figure 5: Based upon the features detected in an image of an 
interface, Prefab generates a set of prototype hypotheses and 
then identifies occurrences by testing those hypotheses 
against the pixels in the image of the interface. 
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might click on widget in an image of an interface and then 
choose from a small sorted list of prototypes (e.g., choosing 
the prototype that indicates their click was on a slider).  

We address this goal using a branch-and-bound search [17]. 
This section discusses lightweight example extraction and 
our posing of the parameter search problem. 

Example Extraction 
Most example widgets can be quickly extracted from an 
image of an interface with one or two clicks. Widgets are 
designed to be easily visible against their background, and 
so they typically include well-defined edges. A person 
using our prototype authoring tool captures one or more 
images of an interface and then provides one or more clicks 
in the interior of a widget. Allowing multiple clicks 
accounts for the case where a widget contains multiple 
apparently disjoint pieces. Our tool then identifies a set of 
increasingly large rectangles that contain these clicks, that 
do not cross pixels where the gradient exceeds a threshold 
(the zero threshold defining rectangles where all pixels are 
the same color), and where each larger rectangle contains 
an additional set of connected pixels where the gradient 
does exceed the threshold. For a particular threshold, all 
such rectangles can be found in a simple greedy search that 
is at worst linear in the number of pixels in the image. A 
simple extension allows finding all unique rectangles for all 
thresholds in much less than the product of thresholds by 
pixels. We find all such rectangles, prioritize the smallest, 
and present a sorted list to the person using the authoring 
tool. For all prototypes we have created, this generates the 
correct example extraction within the top handful of results. 
We note, however, that tools for arbitrary pixel selection 
could be provided if a situation were found where these 
heuristics fail to identify the correct segmentation. 

While a person is creating a prototype, our authoring tool 
applies that prototype to images currently loaded in the tool 
and displays any detected occurrences. This is helpful for 
seeing if a prototype is effective, and also eases 
specification of negative examples. Negative examples are 
used to correct over-generalization, where the prototype fit 
from a set of examples results in false detections. We have 
so far only encountered one situation requiring a negative 
example. The custom widgets in the YouTube movie player 
in Figure 1 are painted such that they share vertical edges 
(the pixel defining the right edge of one widget also defines 
the left edge of the adjacent widget). This led Prefab to 
over-generalize by interpreting each group of k adjacent 
occurrences as an occurrence. Marking any one of these as 
a negative example corrects the prototype (prompting 
Prefab to base the prototype on the combination of the 
single-pixel edge and the adjacent interior pixel color). 

Model Parameters and Prototype Definitions 
Each model exposes a set of parameters, possible values, 
and constraints on allowable combinations. For example, 
our eight-part model exposes ordinals for the width and 
height of each corner feature and for the depth of each edge 

region. It also constrains the corners and edges to jointly 
specify non-overlapping adjacent areas (i.e., a border).  

Importantly, it is not a model developer’s responsibility to 
determine optimal parameters (i.e., to optimally divide 
pixels from an example into parts). A model specifies 
allowable combinations, and the branch-and-bound search 
algorithm then chooses the optimal combination. Models 
have two responsibilities: (1) given a complete parameter 
assignment, create a prototype and assign it a cost, and 
(2) given a partial parameter assignment, compute a lower 
bound on the cost of prototypes that can result. Prefab poses 
both as a matter of assigning example pixels to model parts. 

Creating Prototypes and Assigning Cost 
We have found that the most appropriate prototype is 
typically the one which requires the fewest pixels to explain 
the appearance of positive examples. The intuition behind 
this is similar to the minimum description length principle, 
a formalization of Occam’s Razor in machine learning [16]. 
Prefab creates a prototype by minimizing the number of 
pixels needed to describe each part, then computes the cost 
of the prototype as the total number of pixels in its parts.  

For example, the prototype in Figure 3 sets the width and 
height of each corner feature to three and edge depth to one. 
At these settings (selected by the branch-and-bound search), 
our eight-part model first assigns the nine pixels in each 
corner to their corresponding features. It then fits a region 
to the remaining pixels along each edge. The repeating 
region type can characterize each of the edges with a single 
pixel, and so is selected by the model. The prototype’s total 
cost is therefore 40 pixels.  

In contrast, Figure 6 shows two other prototypes that 
characterize the same example. The left has larger corner 
features (for which it must pay additional pixels), but gains 
no benefit from them (it pays the same number of pixels to 
explain its edges as the prototype from Figure 3). The right 
prototype has smaller corners, but the resulting top and 
bottom edges cannot be described by a single repeating 
pixel. Because these require 68 and 44 pixels, they are 
rejected in favor of Figure 3’s prototype. Figure 3’s 
prototype is also more robust (the right prototype above 
describes only buttons of exactly the same width shown).  

Each model takes its own approach to assigning pixels to 
parts based on a set of assigned values for its parameters. 
For example, our five-part model of a slider includes a 
feature for each end of the trough, a feature for the thumb, 

           
Figure 6: These are both valid prototypes for a single 
example Microsoft Windows Vista Steel button, but 
require 68 and 44 pixels to define. Prefab thus prefers the 
prototype shown in Figure 2, which requires only 40 
pixels. Note Figure 2’s prototype also generalizes better. 
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and two regions for the trough on either side of the thumb. 
It first assigns pixels to the end features (based on provided 
parameters), then scans the remaining pixels. At each step, 
it either attributes a column of pixels to the left region or 
skips a fixed number of pixels (a thumb width parameter) 
and attributes them to the right. Assignments are generally 
straightforward, as any challenging aspects of assignment 
should be exposed as a parameter and delegated to the 
search (e.g., the optimal size of edges or the slider thumb). 

Multiple positive examples add the requirement a prototype 
describe all of them. Negative examples override the cost 
optimization: a prototype with a lower cost than the current 
best-known prototype is checked against negative examples 
before being promoted to the best (there is no reason to 
check the negative examples otherwise). If a prototype 
matches a negative example, it effectively has infinite cost. 

Computing Lower Bounds on Partial Assignments 
Prefab uses a branch-and-bound search, so models must 
compute lower bounds on partial assignments. For example, 
if the current best prototype for a particular eight-part 
model requires 40 pixels and the first several parameters of 
a partial assignment configure the top corners such that they 
consume 40 pixels (perhaps making them each 4x5), then 
no possible assignment of the other parameters can lead to 
an improvement over the current best prototype. 

Models implement lower bound estimates according to how 
they assign pixels to parts. If enough parameters have been 
assigned to compute the actual pixels required by one or 
more parts, the actual cost of those parts can be used. An 
insight that allows re-use of previous computations is that 
the cost of pixels within a particular part is at least as much 
as any subarea of those pixels. If a model has previously 
evaluated the true cost of a part, that cost can be used as a 
lower bound in any assignment that grows the bounds of 
that part. Lower bound correctness is required for the 
branch-and-bound search, so models estimate a single pixel 
for parts for which they cannot provide a tighter bound. 

VALIDATION IN APPLICATIONS 
Prefab demonstrates a new approach to enhancements 
independent of the toolkits used to implement interfaces. 
Because this is a fundamentally new capability, there is no 
reasonable comparison to other approaches for obtaining 
the same effect. We instead validate, demonstrate, and 
provide insight into Prefab by implementing and discussing 
a set of applications. We select these three applications with 
the goal of illustrating a range of complexity. 

All of our applications run on Microsoft Windows Vista 
and are implemented in Microsoft’s C#, using redirection 
mechanisms as discussed with Figure 2. In order to 
demonstrate Prefab enhancements running on interfaces in 
Macintosh OS X, we connect via remote desktop software. 
Prefab thus continues to run on the Microsoft Windows 
Vista machine, adding its enhancements based entirely on 
the pixels delivered through the remote desktop connection. 

Target Aware Pointing Techniques 
As noted in our introduction, target-aware pointing 
techniques, such as Grossman and Balakrishnan’s Bubble 
Cursor [3] and Worden et al.’s Sticky Icons [24], have long 
been known to have many potential advantages, but the 
diversity of existing applications and toolkits continues to 
limit their broader exploration and adoption. Identification 
of targets across existing applications and toolkits is 
sufficiently difficult that researchers have instead explored 
other approaches to approximating the desired behavior, 
such as target-agnostic pointing enhancements [23] and the 
use of click location histories as proxies for targets [10]. 

Figure 7 shows a Prefab Bubble Cursor implementation in a 
dialog from Windows Media Player on Microsoft Windows 
Vista. Figure 1 shows the same Bubble Cursor in a Mozilla 
Firefox dialog on Macintosh OS X (using the remote 
desktop method discussed earlier) and in a YouTube movie 
player on Microsoft Windows Vista. Our associated video 
shows a similar implementation of Sticky Icons. To the best 
of our knowledge, Prefab is the first approach to 
implementing target-aware pointing techniques as general 
enhancements across a variety of existing applications 
independent of their underlying toolkit implementation. 

These target-aware pointing techniques are straightforward 
applications of Prefab. We extracted examples and built 
prototypes to identify Microsoft Windows Vista and 
Macintosh OS X buttons, checkboxes, textfields, and other 
standard widgets. We similarly created several prototypes 
of more specific widgets, such as the custom slider in the 
YouTube movie player (based on the same models as the 
standard widgets). These target-aware pointing techniques 
require only the location and size of current targets, so did 
not use it was not necessary to implement any transitions. 
The Sticky Icons enhancement simply adjusts the mouse 
gain, while the Bubble Cursor annotates the target window 
and manipulates how click events are mapped to the source.  

Phosphor 
Baudisch et al. developed Phosphor, showing the use of 
afterglows to explain user interface transitions [1]. One 
potential benefit Baudisch et al. identify is in remote 
collaboration, where the afterglow makes it easier to 
determine what changes a remote collaborator has made in 
an interface. Despite the promise of Phosphor, it has been 
difficult to evaluate its effectiveness in realistic use or to 
deploy it in collaborative meeting software. 

        
Figure 7: Grossman and Balakrishnan’s Bubble Cursor 
expands to ensure that the nearest target is selected [3]. 
Prefab can enable such target-aware pointing techniques 
as general enhancements across a variety of applications 
independent of their underlying toolkit implementation. 
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Figure 8 shows our Prefab implementation of Phosphor, 
with afterglow effects showing recent manipulation of two 
checkboxes and a slider in Windows Media Player on 
Microsoft Windows Vista. Figure 1 shows the same code 
creating Phosphor effects for Macintosh OS X widgets in 
Apple’s iTunes (using the remote desktop method discussed 
earlier). Note the afterglow applied to the sliders in these 
figures includes a ghosted thumb, painted using the actual 
thumb for those sliders. Also note these afterglows require 
near instantaneous recognition of widget manipulation. 
Because Prefab is based entirely on pixels, Phosphor could 
be included in collaborative meeting software independent 
of the toolkits used to implement shared applications.  

Building upon the same prototypes from our target-aware 
pointing demonstrations, our implementation of Phosphor 
uses Prefab transitions to observe widget state changes. 
These expire and are reset whenever a widget is observed in 
the same state as the previous frame. A timeout on the 
transition allows a widget a reasonable time interval to 
animate into a new state, and we use output redirection to 
superimpose our afterglow. The ghost of the slider’s actual 
thumb is painted using the thumb feature from the Prefab 
prototype that detects the slider, as illustrated in Figure 9. 

Side Views Parameter Spectrums 
Our previous applications show local widget enhancement, 
but Prefab can also be used as part of larger enhancements. 
To demonstrate this, we implemented Terry and Mynatt’s 
Side Views parameter spectrums [22]. The goal of 
parameter spectrums is to better support open-ended tasks 
by simultaneously previewing a range of options for values 
of multiple parameters. Terry and Mynatt showed 
parameter spectrums for image editing filters in the GNU 
Image Manipulation Program (the GIMP), chosen because 
its open-source implementation allowed necessary 
modifications. Despite the promise of this technique, the 
closed-source nature of Adobe’s Photoshop prevents 
researchers and practitioners from studying or deploying 
parameter spectrums in this more widely-used package. 
This problem is typical of situations where researchers and 
practitioners find themselves unable to modify, personalize, 
or interoperate with existing closed-source interfaces. 

Figure 1 shows a parameter spectrum for an image filter in 
Adobe Photoshop on Microsoft Windows Vista. Our 
associated video also shows parameter spectrums for the 
GIMP implemented without modifying its source. In both 
cases, we use Prefab to interpret the filter dialogs and use 
synthetic mouse events to manipulate sliders within the 
filter dialogs to obtain images to populate the spectrums. 
An eight-part prototype identifies the preview area in each 
dialog, from which we extract the image for a particular 
parameter configuration. An interesting difference between 
the two is how our implementation determines when to 
capture the preview image for a particular parameter 
configuration. Photoshop provides a small progress bar at 
the bottom-left of the filter dialog, and we use Prefab to 
observe the completion of this progress bar before grabbing 
the preview. The GIMP does not provide such a progress 
bar, and so we monitor the contents of the preview area and 
capture an image after observing a stable change. In both 
cases, we use a timeout to recover from the situation where 
Prefab does not observe the expected transition. 

RELATED WORK 
Hudson and Smith propose toolkit support for separating 
interface style from content, drawing an analogy to painting 
the same text with different fonts [7]. Hudson and Tanaka 
build upon this, developing methods for painting highly 
stylized widgets [8]. Hudson and Tanaka’s methods include 
an eight-part border based in painting fixed corners and 
variable edges, analogous to the eight-part model discussed 
in this paper. Prefab turns these approaches to painting 
widgets on their heads, separating recognition of interface 
content (described by Prefab models) from style (described 
by Prefab prototypes). Prefab is simultaneously informed 
by the workings of user interface toolkits and independent 
of a toolkit’s implementation: our eight-part model can 
characterize many widgets regardless of whether they were 
painted using Hudson and Tanaka’s eight-part method. 

Edwards et al. [2] and Olsen et al. [13] develop approaches 
to modifying and enhancing interfaces based on replacing 
an application’s drawing object and intercepting application 
commands (e.g., draw_line, draw_string). They require 
minimal modification to applications (limiting relevance to 
closed-source interfaces), but more importantly require 
implementation particular to each toolkit. Our pixel-based 
approach requires no modification to existing applications 
and is independent of underlying toolkit implementation. 

Hutchings and Stasko’s mudibo uses graphical interface 
input and output redirection to present windows in multiple 
locations, allowing a person to choose to interact with the 
window in the desired location [11]. Tan et al.’s WinCuts 
allows subdivision of windows using a copy-paste approach 
to configuring redirection [21]. Stuerzlinger et al. present 
advanced customizations in their work on User Interface 
Facades, many based on toolkit-specific introspection [20]. 
These each use redirection mechanisms similar to those 
from Figure 2, but are either limited by a lack of 
meaningful interpretation of the source or rely upon toolkit 

 
Figure 8: We have used Prefab to implement Baudisch 
et al.’s Phosphor [1] based entirely on an interface’s pixels.  

 
Figure 9: We use the image of the thumb from the slider’s 
prototype to paint the ghosted thumb in the afterglow.  
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introspection for that interpretation. Our work is unique in 
combining input and output redirection with pixel-based 
interpretation, enabling interpretation-based modifications 
independent of interface implementation mechanisms.  

The most relevant prior work thus examines pixel-based 
interpretation and manipulation of graphical user interfaces. 
Olsen et al.’s ScreenCrayons builds upon the universality of 
pixels, analyzing images of interfaces to associate ink 
annotations, but does not interpret those images [14]. 
Classic work by Zettlemoyer et al. examines pixel-based 
identification of widgets for IBOTS and VisMap [26, 27] in 
the context of supporting interface agents and programming 
by example [15, 18]. Zettlemoyer et al.’s methods require 
code-based descriptions of the appearance of widgets, and 
Zettlemoyer et al. report that 40% of VisMap code is 
specific to the particular Microsoft Windows widgets it 
recognized. Continued development of these methods in 
Segman also found their performance insufficient for 
interactive applications [19]. Prefab’s performance is an 
obvious improvement, as is our use of example-based 
prototype creation and the fact that none of our model code 
is specific to any particular toolkit. Yeh et al. recently 
developed Sikuli, which supports image-based interface 
search and automation [25]. Sikuli uses computer vision 
methods (template matching and voting based on invariant 
local features), and Yeh et al. report these require 200msec 
to identify all occurrences of a single target in an image of a 
desktop. In contrast, recall that Prefab must identify many 
prototypes many times per second. Hurst et al. use several 
pixel-based techniques to improve the accessibility API’s 
detection of target boundaries [9]. Their specific goals lead 
them to leverage information unavailable in the general 
interface interpretation problem (e.g., image differences 
available only after a person clicks on a target), and they do 
not generalize a notion of edges and corners to consider 
different arrangements. Thus none of this prior work 
leverages Prefab’s core insight of separating the modeling 
of widget layout from the description of widget appearance. 

DISCUSSION 
Prefab represents a first step towards pixel-based reverse 
engineering of interfaces based on models of how those 
interfaces are painted by applications and user interface 
toolkits. This section discusses several important aspects of 
Prefab and identifies important directions for future work. 

This paper intentionally presents the simplest description of 
using a prototype library to reverse engineer an image, 
focusing on information flow as Prefab locates features, 
generates hypotheses, and tests those hypotheses. There are 
many opportunities for principled optimizations. The most 
important is probably that most pixels do not change 
between successive frames. Prefab’s entire process can be 
implemented with incremental evaluation, using lightweight 
dataflow to re-compute exactly the features and prototypes 
that could possibly have changed as a result of differences 
between successive frames [5]. Prefab’s entire process also 
supports a multi-core approach, as feature detection can be 

applied to multiple pixels simultaneously, multiple models 
can simultaneously generate hypotheses from detected 
features, and those hypotheses can be tested in parallel. It is 
also possible to vastly reduce the number of pixels that 
must be tested for features in each image. If every feature 
contains at least two adjacent pixels, for example, only half 
the pixels in an image need to be tested. Given these and 
other opportunities for principled optimization, we do not 
foresee performance as problematic for most applications. 
Our current single-threaded implementation uses a simple 
ad-hoc frame difference optimization, and our associated 
video shows multiple applications recognizing prototypes in 
real interfaces of existing applications with frame-to-frame 
computations typically well under 50msec. 

Not all interfaces are created entirely from standard 
widgets. Prefab can still be effective in such interfaces for 
two reasons. First, even non-standard interfaces are 
procedurally generated. Once a prototype of such an 
interface is created, it is unlikely to change. Second, 
non-standard interfaces cannot be generally successful 
unless they look like an interface. Prefab may ultimately 
prove to be a more reliable approach to non-standard 
interfaces because it is based on their appearance instead of 
toolkit introspection mechanisms that developers often 
neglect to implement in non-standard components. 

We have shown that a number of interesting applications 
are enabled by Prefab’s current implementation, but Prefab 
also currently has several important limitations. There is 
currently no structured approach to interpreting the content 
portions of prototype occurrences (e.g., Prefab can identify 
the three buttons in Figure 5, but not the fact that they are 
labeled “A”, “B”, and “C”). Prefab transitions allow 
monitoring of simple dynamics, but are defined at such a 
low level that they can be tedious to configure in large 
enhancements. Prefab would thus benefit from an approach 
to modeling state machine relations among prototypes 
corresponding to the different states of a widget as well as 
improved approaches to managing other common types of 
related transitions (e.g., animations). Prefab also currently 
does not model relationships among widgets, and so does 
not have an understanding of the behavior of group of radio 
buttons or the hidden content associated with a scroll pane 
or a tab panel. We ultimately intend for Prefab to support a 
wide variety of applications beyond those explored in this 
paper, such as accessibility enhancements, tutorials for 
off-the-shelf software, context-sensitive help mechanisms, 
and CSCW extensions to existing applications. Whether 
Prefab’s current limitations are problematic depends upon 
the intended enhancement. In the case of accessibility 
enhancements, for example, Prefab can enable target-aware 
techniques with significant implications for people with 
motor impairments, but the lack of content interpretation 
means Prefab cannot be used to implement screen reading 
for people for visual impairments. Finally, we note it is also 
non-trivial to create sophisticated models. We have stated 
that we believe this effort can be justified if the resulting 
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model applies to a large and wide variety of prototypes, but 
improved authoring tools also warrant serious exploration. 
We see all of these limitations as rich areas for future work. 

CONCLUSION 
Prefab contributes pixel-based reverse engineering of 
interfaces that separates modeling of widget layout from 
recognition of widget appearance, Prefab enables a practical 
approach to adding advanced behaviors to new and existing 
interfaces independent of particular user interface toolkits. 
In addition to its direct implications for human-computer 
interaction research and practice, we hope Prefab can help 
to break some of the critical mass and chicken-and-egg 
problems currently limiting user interface tools research. 
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