

Prefab: Implementing Advanced Behaviors Using
Pixel-Based Reverse Engineering of Interface Structure

Morgan Dixon and James Fogarty
Computer Science & Engineering

DUB Group, University of Washington
{mdixon, jfogarty}@cs.washington.edu

ABSTRACT
Current chasms between applications implemented with
different user interface toolkits make it difficult to implement
and explore potentially important interaction techniques in
new and existing applications, limiting the progress and
impact of human-computer interaction research. We examine
an approach based in the single most common characteristic
of all graphical user interface toolkits, that they ultimately
paint pixels to a display. We present Prefab, a system for
implementing advanced behaviors through the reverse
engineering of the pixels in graphical interfaces. Informed by
how user interface toolkits paint interfaces, Prefab features a
separation of the modeling of widget layout from the
recognition of widget appearance. We validate Prefab in
implementations of three applications: target-aware pointing
techniques, Phosphor transitions, and Side Views parameter
spectrums. Working only from pixels, we demonstrate a
single implementation of these enhancements in complex
existing applications created in different user interface
toolkits running on different windowing systems.

Author Keywords
Prefab, user interface toolkits, pixel-based reverse engineering.

ACM Classification Keywords
H5.2. Information interfaces and presentation: User Interfaces.

General Terms
Human Factors

INTRODUCTION AND MOTIVATION
Nearly every modern graphical interface is implemented
using some form of user interface toolkit. These toolkits
provide libraries of widgets and associated frameworks that
reduce the time, effort, and amount of code required to
implement an interface. This provides obvious advantages
to developers, but also benefits the users of applications
created with these toolkits. For example, the consistent look
and feel of applications created with a toolkit allows people
to better transfer skills between those applications. Easier
interface development also enables the iterative exploration
of a greater variety of potential designs, which is critical to
successful iterative design processes. User interface toolkits

have enabled many successes in the past forty years of
human-computer interaction research and practice [12].

Unfortunately, the current state of user interface toolkits
also creates significant challenges for research and practice.
When working with an existing toolkit, it is generally
difficult or impossible to modify the core behavior of that
toolkit’s widgets [6]. A researcher who wants to study a
new interaction technique in the context of rich and realistic
applications, or a practitioner who wants to adopt a
technique from the literature, is generally faced with the
prospect of re-implementing huge portions of a toolkit or an
application. Most instead choose to demonstrate techniques
only in toy applications or to develop applications based in
simple combinations of standard widgets [6]. This problem
is magnified by the fact people typically use a wide variety
of applications built with several different toolkits. Each is
implemented differently, and so it is difficult to consistently
add new functionality. For example, target-aware pointing
techniques have long been known to have many potential
advantages [3, 24], but the diversity of implementations of
existing applications and toolkits continues to limit their
broader exploration and adoption. The difficulty of
implementing new interaction techniques in new and
existing applications and toolkits is limiting the progress
and impact of human-computer interaction research.

This paper explores an approach based on the single largest
commonality of this variety of applications and toolkits:
they all ultimately produce pixels on a display. If it were
possible to interpret the structure of these pixels, a variety
of advanced behaviors might be implemented independent
of individual applications and toolkits. Our Prefab system
examines Pixel-based Reverse Engineering For Advanced
Behaviors, and builds upon four fundamental insights:
• The graphical desktop is not a physical scene. Computer

vision algorithms developed to address such problems as
perspective, distortion, shadows, and occlusion may be
overkill or even inappropriate for this problem.

• Because the pixels constituting a particular widget are
defined procedurally, those pixels are typically identical
across invocations of an application on the same or
different computers. If a system can be taught the
definition of a particular widget, it will rarely change.

• Because consistency within an application is important
to the usability of that application, widgets of the same

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

CHI 2010: Pixels and Perception April 10–15, 2010, Atlanta, GA, USA

1525

type are typically illustrated using similar pixels. It is
likely not necessary to individually define each widget
in every application, but may instead be possible to
learn definitions of entire families of widgets (e.g., all
Microsoft Windows Vista Steel buttons, all Java Metal
checkboxes, all Apple Cocoa scrollbars).

• Because consistency across applications is important to
the usability and learnability of applications, different
toolkits provide similar sets of widgets that share many
commonalities (e.g., buttons, checkboxes, scrollbars).
Modeling these commonalities, based in part on how
such toolkits are implemented, is likely to be important
to pixel-based reverse engineering of interface structure.

In short, graphical desktops are not physical scenes, but are
instead made of pre-fabricated units combined according to
very particular rules. Prefab uses raw pixels to reverse
engineer interface structure by identifying these
pre-fabricated units and then modeling their relations.

Figure 1 presents several examples of advanced behaviors
implemented using Prefab. These examples are embedded
in a variety of applications implemented using different
toolkits running on different platforms. All are implemented
entirely based upon reverse engineering pixels, without
knowledge of the underlying toolkit or implementation.

The next section provides a brief description of how
Prefab’s interpretations can be used to implement advanced
behaviors like those in Figure 1. We then provide an
introduction to each of Prefab’s major components and
describe their relationships. Next, we introduce two Prefab
models that we use as examples throughout this paper. In
the main portion of our technical content, we first present
how Prefab uses a library of prototypes to reverse engineer

a graphical interface. We then present our current support
for creating the necessary library. We next validate Prefab
in three example applications and then discuss related work.
Finally, we discuss Prefab, its current limitations, and
opportunities for future work.

The specific contributions of this work are:
• An architecture for pixel-based reverse engineering of

interface structure. Informed by how user interface
toolkits paint interfaces, our architecture features a
separation of the modeling of widget layout from the
recognition of widget appearance.

• Initial methods for effectively implementing necessary
components of this architecture and discussion of
opportunities to improve and extend these methods.

• Initial methods supporting the creation of Prefab
prototype libraries, including a branch-and-bound
method for fitting prototype parameters according to
positive and negative examples of occurrences.

• A tool that enables a wide variety of applications using
pixel-based reverse engineering of interface structure.

INPUT AND OUTPUT REDIRECTION
The examples in this paper are based on modifying the
apparent behavior of interfaces using input and output
redirection. A basic mechanism is illustrated in Figure 2,
wherein (1) a bitmap of an existing source window is
captured, (2) the contents of the source are interpreted, (3) a
modified interface is presented in a target window (with the
source potentially hidden using virtual desktop methods),
(4) input in the target is mapped back the source, which
then (5) generates new output that is captured and used to
update the target. We discuss prior redirection research in a

Grossman and Balakrishnan’s Bubble Cursor is an
important target-aware pointing technique [3], but
is difficult to deploy because existing toolkits do
not support it. These are screenshots of a Bubble
Cursor implemented using Prefab, highlighting the
nearest target in a Firefox settings dialog on
Macintosh OS X and in a YouTube movie player.

Baudisch et al.’s Phosphor uses afterglows to illustrate interface changes [1]. This
screenshot of our Prefab implementation of Phosphor shows a recently unchecked checkbox
and a recently manipulated slider in an iTunes settings dialog on an Apple Macintosh.

Terry and Mynatt show that Side Views parameter spectrums can support effective
exploration of multi-parameter spaces [22]. We use Prefab to create a parameter spectrum
for an Adobe Photoshop filter running on Microsoft Windows Vista. We populate the
spectrum by using Prefab to automatically interpret the interface of Photoshop’s filter dialog.

Figure 1: Prefab reverse engineers raw pixels to recover the structure of graphical user interfaces. Because Prefab is agnostic of
an application’s underlying implementation, it enables advanced behaviors across a wide variety of applications and toolkits.
All of these demonstrations of Prefab enhancements are discussed in greater detail later in this paper and in our associated video.

CHI 2010: Pixels and Perception April 10–15, 2010, Atlanta, GA, USA

1526

later section [11, 20, 21], but our research is the first to
combine redirection with pixel-based interpretation of
interfaces. The types of modifications that are possible with
these mechanisms depend upon the completeness of the
available interpretation, so this paper focuses on Prefab’s
methods for identifying widgets many times per second.
Our later discussion provides more insight into our example
applications, current limitations, and applications that could
be enabled by further improvements to Prefab.

PREFAB COMPONENT OVERVIEW
The major components of Prefab’s architecture are: models,
prototypes, parts (including features and regions),
constraints, and transitions. This section briefly introduces
each component so that future sections can provide a
detailed discussion of their usage and relationships.

A model consists of a set of abstract parts and a set of
concrete constraints regarding those parts. A typical model,
for example, might include several constraints requiring
that particular parts are adjacent. The parts of a model are
abstract, and so a model does not describe any particular
widget or set of widgets. Instead, a model describes a
pattern for composing a set of parts to create a widget.

Parts can be either features or regions. A feature stores an
exact patch of pixels (exact colors in a spatial arrangement
of an exact size). For reasons that are obvious when we
discuss how Prefab reverse engineers a particular interface,
every model includes at least one feature. A region stores a
procedural definition of a method for generating a set of
pixels in an area of variable size (e.g., painting a repeating
pattern, painting a gradient). Because the same parts can be
arranged in many different ways, they alone do not describe
any particular widget or set of widgets.

A prototype parameterizes a model with concrete parts,
characterizing both the appearance of a set of parts and
applicable constraints upon the relationships of those parts.
A prototype therefore describes the appearance of a
particular widget or set of widgets (e.g., the Mozilla Firefox
Home toolbar button, all Microsoft Windows Vista Steel
buttons). Prefab is implemented as a library of prototypes,
together with methods for effectively applying those
prototypes to identify occurrences of widgets.

The separation of layout (described by a model) from
appearance (when parts are specified to create a prototype)
is critical to Prefab and is informed by important aspects of
how toolkits paint widgets. For example, to support widgets
with content of varying sizes, toolkits often paint a border
of the required size (delimiting space dedicated to a widget)
and then paint the content of the widget within that border
(e.g., centering a label or an icon within a button, displaying
the current value of an editable text field). Similarly, a
slider widget paints a trough and a thumb, regardless of the
underlying toolkit. Prefab separates such general insight
about how widgets are drawn from details of the
appearance of individual widgets (e.g., the stroke used to
paint a border, the shape of a slider’s thumb). For example,
a model of eight parts creating a rectangular border is
capable of describing a wide variety of widgets.

Prefab’s final major component is a transition. Although
many potential applications of Prefab can be based on
reverse engineering a single frame or state of an interface,
many others require interpreting the contents of an interface
across multiple frames or states. A Prefab transition is
defined as a pair of prototypes and a set of constraints that
specify when the transition is allowable. When an
occurrence of the first prototype is observed, Prefab begins
tracking the transition. If an occurrence of the second
prototype is observed that is compatible with the specified
constraints, the transition is fired.

TWO EXAMPLE MODELS
The next two sections discuss the use and creation of a
library of Prefab prototypes, consistently using two
example models: a one-part model and an eight-part model.
Prefab is an extensible system, and these were selected to
provide insight into extension by illustrating the opposite
extremes of complexity in our current models.

The one-part model is our simplest, consisting of only a
single feature. A prototype specifies a single exact patch of
pixels, and Prefab identifies occurrences whenever it
observes those exact pixels. This model might appear to be
a strawman, but our experiences suggest that it can be quite

Figure 3: This Prefab prototype for Microsoft Windows
Vista Steel buttons is an example of an eight-part model.
Four features define the corners, each edge is defined by a
region, and constraints require the parts form a rectangle.
This prototype recognizes all Microsoft Windows Vista
Steel buttons, independent of their interior content.

Figure 2: Redirection mechanisms allow modification of
the apparent behavior of interfaces through modification
of their input and output. Prefab provides a unique
approach to rapid pixel-based interpretation of interfaces.

CHI 2010: Pixels and Perception April 10–15, 2010, Atlanta, GA, USA

1527

effective at supporting widgets for which there is not yet a
more specialized model (with the obvious limitation that it
does not generalize across families of widgets).

The eight-part model is illustrated in Figure 3 with its parts
parameterized by the appearance of the Microsoft Windows
Vista Steel button. Features define the corners, a region
defines each edge, and constraints require the parts form a
rectangle. This prototype’s edges are a single repeating
pixel, but other region types are possible (e.g., a repeating
sequence, a repeating multi-row pattern, a gradient).

REVERSE ENGINEERING AN INTERFACE
Our goal is to identify all occurrences of widgets from our
prototype library in an image of an interface. To support
real-time interactive enhancements of interfaces, we want to
do this many times per second. Because the graphical
desktop is not a physical scene, and because we need to
identify many widgets many times per second, techniques
developed in computer vision are a poor fit for our problem.
For example, Yeh et al.’s recently developed Sikuli system
uses a combination of template matching and voting based
on invariant local features, and it requires a reported
200msec to identify all occurrences of a single target [25].
Because we need to more quickly identify all occurrences
of many widgets, we develop an approach tailored to the
recognition of widgets in images of graphical interfaces.

Prefab first conducts a single pass over an image to identify
all occurrences of features from the prototype library.
Based on the detected features, models generate hypotheses
regarding potential occurrences. Actual occurrences are
detected by filtering these according to the constraints of
the relevant model, including checking the validity of pixels
in any regions. After identifying occurrences of prototypes
in the current image, Prefab determines whether any
relevant transitions have occurred and updates its set of
transitions that are potentially in progress. For the sake of
clarity, this section presents each step in its simplest form,
using our one-part and eight-part models as examples. In
our later discussion, we note several aspects of the process
presented here that can be optimized for performance.

Locating Features
When a library of prototypes is created, Prefab chooses a
non-transparent hotspot within the patch of pixels defining
each feature in the library. Prefab constructs a decision tree
for determining whether a pixel in an image of an interface
is the hotspot of any feature in the tree, as in Figure 4. Each
internal node specifies an offset relative to the hotspot, each
edge corresponds to the color at that offset, and each leaf
corresponds to a feature. Traversing the tree to a leaf tests
every pixel in a feature (e.g., the leftmost path in Figure 4
tests the dark grey pixel, then the blue pixel, then the light
grey, and finally the yellow pixel). If an internal node lacks
an edge corresponding to the color at the specified offset,
then traversal ends and the pixel to which the tree is
currently being applied is not the hotspot of any feature.
This decision tree is stored in the library and evaluated
against images of interfaces to locate features at runtime.

The hotspot for each feature and the offset at each internal
node can be chosen arbitrarily, but simple heuristics
improve performance. Our implementation currently first
tests the non-transparent hotspot (a transparent pixel within
a feature indicates the color of that pixel is irrelevant to the
feature), then chooses the offset for each internal node that
maximizes information gain. When choosing a hotspot for
each feature in the prototype library, our implementation
chooses a pixel of a color that is least common among all
features in the prototype library (using the distribution of
colors in the features as a proxy for the distribution of
colors in interfaces). These heuristics combine to minimize
the tree depth and the length of typical partial traversals.

Generating Hypotheses
After identifying all feature occurrences, each Prefab model
generates hypotheses of potential prototype occurrences.
Importantly, the overwhelming majority of prototypes in
the library have already been removed from consideration.
Every model contains at least one feature, and Prefab has
identified all occurrences of all features, so any prototype
that includes features which have not been detected cannot
appear in the current image.

Hypotheses for one-part prototypes are trivial to generate.
Because the one-part model consists of a single feature, a
single hypothesis for a one-part prototype is generated at
each location in the image where that feature occurs.

A naïve but sufficient general method is for a model to
enumerate all mappings between a prototype’s features and
occurrences of those features in an image. For example, a
model that contains k features, each of which occurs f times
in a particular image, could generate f k unique hypotheses.

Prefab models can apply constraints to generate a much
smaller set of hypotheses. For our eight-part model, its four
features are constrained to a rectangle. The model therefore
generates hypotheses by starting from each occurrence of a
prototype’s top-left feature, checking to the right for the
top-right feature, then down for the bottom-right feature,
left for the bottom-left feature, and finally confirming the

Figure 4: Prefab constructs a decision tree that tests
whether a pixel is the hotspot of a feature from the
prototype library. It uses this tree to scan an image of an
interface, detecting all features in a single pass.

CHI 2010: Pixels and Perception April 10–15, 2010, Atlanta, GA, USA

1528

bottom-left feature is directly below the top-left feature.
The number of arrangements considered and the number of
hypotheses generated are both far less than the naïve f k. We
have found it relatively easy to implement such methods for
efficiently generating small sets of high-quality hypotheses,
but more importantly we note that they are implemented in
the model and therefore shared by many prototypes. Even if
it were relatively difficult to implement an efficient method
for generating good hypotheses in a particular model, we
believe this effort would be justified if the model could then
be applied to a large and wide variety of prototypes.

Detecting Prototype Occurrences
After generating a set of hypotheses, actual occurrences are
detected by filtering hypotheses according to the constraints
of the relevant model, including checking the validity of
pixels in any regions. Hypotheses that pass these filters are
reported to applications as prototype occurrences.

Prefab’s models can use arbitrary code for constraints
before or after region validation. In our current models, we
have found the combination of constraints on feature
arrangement during hypothesis generation and validation of
region pixels to be sufficient and effective. Prefab’s support
of arbitrarily logic for filtering hypotheses may prove useful
in future extensions with additional models.

During region validation, models identify sets of pixels to
be validated and delegate validation to the region object. In
our eight-part model, for example, a hypothesis defines the
locations of the four corner features. Based on these, the
model defines four sets of pixels corresponding to the top,
right, bottom, and left edges. It then delegates validation of
each set of pixels to the region objects in the prototype
being tested. For the Microsoft Windows Vista Steel button
prototype from Figure 3, the region validates the presence
of the single repeating pixel along the edge. Different types
of regions (e.g., a repeating sequence, a repeating multi-row
pattern, a gradient) take their own approaches to validating

pixels delegated to them by the model. If the region rejects
the pixels, the model rejects the current hypothesis.

Monitoring Transitions
Prefab applications can be based entirely upon notifications
of prototype occurrences, but we have found that many
potential applications require observation of a transition
from one prototype to another. We therefore added explicit
support for observing such transitions with Prefab. Each
transition is defined by a prototype whose occurrence
initiates monitoring of the potential transition, a prototype
whose occurrence indicates it may be appropriate to trigger
the transition notification, and a set of constraints
(including both support for arbitrary logic and pre-packaged
versions of commonly used constraints, such as timeouts).

Prefab maintains a set of transitions that are potentially in
progress. After determining which prototypes occur in the
current frame (and reporting them to applications), Prefab
checks for transitions that are potentially in progress and
could be triggered by an occurrence in the current frame.
These are given the option of triggering, subject to their
constraints. All transitions in the set are then given the
option to expire (separating triggering from expiration
allows transitions that trigger and then expire, expire
without triggering, or trigger multiple times before
expiring). Finally, the current occurrences are examined for
prototypes that could initiate a transition and those
transitions are added to the set potentially in progress.

SUPPORTING PREFAB PROTOTYPE CREATION
There are a range of approaches to developing libraries of
prototypes required for Prefab applications. A researcher
evaluating an interaction technique in a set of existing
applications might create a prototype library for the widgets
used in those applications. A practitioner or hobbyist who
wants to use a Prefab enhancement with their favorite
application might create the necessary library and share it
with other users of the application. Communities might
create and maintain large shared libraries, perhaps using
wiki functionality like that developed for web mashups with
d.Mix [4]. Explicit specification might be enhanced with
automated learning of prototypes through passive
observation of people using everyday interfaces. We are
ultimately interested in all of these possibilities, but this
initial work focuses on a common first requirement:
supporting effective creation of Prefab prototypes.

It is possible to manually specify the parameters of a model
corresponding to a particular widget or family of widgets,
but such a process is tedious and is also likely to introduce
errors. We therefore develop methods for the lightweight
interactive specification of Prefab prototypes based on
positive and negative examples (examples of widgets that a
prototype should or should not identify). Our goal is not
necessarily complete automation of example-based
prototype creation, as we do not believe this is necessary
for supporting the effective creation of prototype libraries.
Instead, we believe it is sufficient to reduce the required
effort to a small number of clicks. For example, a person

Three occurrences of the same
eight-part prototype, with their
total of 12 features identified.

The correct hypotheses are all detected.

This combination never generates a hypothesis.
Its upper-right feature (bottom-right of the “A”
occurrence) is not the prototype’s required type.

This combination includes all four required
features, but fails the model’s rectangle
constraint and never generates a hypothesis.

This combination includes correct features in
a valid layout, but the gap between buttons is
inconsistent with the repeating edge region.

Figure 5: Based upon the features detected in an image of an
interface, Prefab generates a set of prototype hypotheses and
then identifies occurrences by testing those hypotheses
against the pixels in the image of the interface.

CHI 2010: Pixels and Perception April 10–15, 2010, Atlanta, GA, USA

1529

might click on widget in an image of an interface and then
choose from a small sorted list of prototypes (e.g., choosing
the prototype that indicates their click was on a slider).

We address this goal using a branch-and-bound search [17].
This section discusses lightweight example extraction and
our posing of the parameter search problem.

Example Extraction
Most example widgets can be quickly extracted from an
image of an interface with one or two clicks. Widgets are
designed to be easily visible against their background, and
so they typically include well-defined edges. A person
using our prototype authoring tool captures one or more
images of an interface and then provides one or more clicks
in the interior of a widget. Allowing multiple clicks
accounts for the case where a widget contains multiple
apparently disjoint pieces. Our tool then identifies a set of
increasingly large rectangles that contain these clicks, that
do not cross pixels where the gradient exceeds a threshold
(the zero threshold defining rectangles where all pixels are
the same color), and where each larger rectangle contains
an additional set of connected pixels where the gradient
does exceed the threshold. For a particular threshold, all
such rectangles can be found in a simple greedy search that
is at worst linear in the number of pixels in the image. A
simple extension allows finding all unique rectangles for all
thresholds in much less than the product of thresholds by
pixels. We find all such rectangles, prioritize the smallest,
and present a sorted list to the person using the authoring
tool. For all prototypes we have created, this generates the
correct example extraction within the top handful of results.
We note, however, that tools for arbitrary pixel selection
could be provided if a situation were found where these
heuristics fail to identify the correct segmentation.

While a person is creating a prototype, our authoring tool
applies that prototype to images currently loaded in the tool
and displays any detected occurrences. This is helpful for
seeing if a prototype is effective, and also eases
specification of negative examples. Negative examples are
used to correct over-generalization, where the prototype fit
from a set of examples results in false detections. We have
so far only encountered one situation requiring a negative
example. The custom widgets in the YouTube movie player
in Figure 1 are painted such that they share vertical edges
(the pixel defining the right edge of one widget also defines
the left edge of the adjacent widget). This led Prefab to
over-generalize by interpreting each group of k adjacent
occurrences as an occurrence. Marking any one of these as
a negative example corrects the prototype (prompting
Prefab to base the prototype on the combination of the
single-pixel edge and the adjacent interior pixel color).

Model Parameters and Prototype Definitions
Each model exposes a set of parameters, possible values,
and constraints on allowable combinations. For example,
our eight-part model exposes ordinals for the width and
height of each corner feature and for the depth of each edge

region. It also constrains the corners and edges to jointly
specify non-overlapping adjacent areas (i.e., a border).

Importantly, it is not a model developer’s responsibility to
determine optimal parameters (i.e., to optimally divide
pixels from an example into parts). A model specifies
allowable combinations, and the branch-and-bound search
algorithm then chooses the optimal combination. Models
have two responsibilities: (1) given a complete parameter
assignment, create a prototype and assign it a cost, and
(2) given a partial parameter assignment, compute a lower
bound on the cost of prototypes that can result. Prefab poses
both as a matter of assigning example pixels to model parts.

Creating Prototypes and Assigning Cost
We have found that the most appropriate prototype is
typically the one which requires the fewest pixels to explain
the appearance of positive examples. The intuition behind
this is similar to the minimum description length principle,
a formalization of Occam’s Razor in machine learning [16].
Prefab creates a prototype by minimizing the number of
pixels needed to describe each part, then computes the cost
of the prototype as the total number of pixels in its parts.

For example, the prototype in Figure 3 sets the width and
height of each corner feature to three and edge depth to one.
At these settings (selected by the branch-and-bound search),
our eight-part model first assigns the nine pixels in each
corner to their corresponding features. It then fits a region
to the remaining pixels along each edge. The repeating
region type can characterize each of the edges with a single
pixel, and so is selected by the model. The prototype’s total
cost is therefore 40 pixels.

In contrast, Figure 6 shows two other prototypes that
characterize the same example. The left has larger corner
features (for which it must pay additional pixels), but gains
no benefit from them (it pays the same number of pixels to
explain its edges as the prototype from Figure 3). The right
prototype has smaller corners, but the resulting top and
bottom edges cannot be described by a single repeating
pixel. Because these require 68 and 44 pixels, they are
rejected in favor of Figure 3’s prototype. Figure 3’s
prototype is also more robust (the right prototype above
describes only buttons of exactly the same width shown).

Each model takes its own approach to assigning pixels to
parts based on a set of assigned values for its parameters.
For example, our five-part model of a slider includes a
feature for each end of the trough, a feature for the thumb,

Figure 6: These are both valid prototypes for a single
example Microsoft Windows Vista Steel button, but
require 68 and 44 pixels to define. Prefab thus prefers the
prototype shown in Figure 2, which requires only 40
pixels. Note Figure 2’s prototype also generalizes better.

CHI 2010: Pixels and Perception April 10–15, 2010, Atlanta, GA, USA

1530

and two regions for the trough on either side of the thumb.
It first assigns pixels to the end features (based on provided
parameters), then scans the remaining pixels. At each step,
it either attributes a column of pixels to the left region or
skips a fixed number of pixels (a thumb width parameter)
and attributes them to the right. Assignments are generally
straightforward, as any challenging aspects of assignment
should be exposed as a parameter and delegated to the
search (e.g., the optimal size of edges or the slider thumb).

Multiple positive examples add the requirement a prototype
describe all of them. Negative examples override the cost
optimization: a prototype with a lower cost than the current
best-known prototype is checked against negative examples
before being promoted to the best (there is no reason to
check the negative examples otherwise). If a prototype
matches a negative example, it effectively has infinite cost.

Computing Lower Bounds on Partial Assignments
Prefab uses a branch-and-bound search, so models must
compute lower bounds on partial assignments. For example,
if the current best prototype for a particular eight-part
model requires 40 pixels and the first several parameters of
a partial assignment configure the top corners such that they
consume 40 pixels (perhaps making them each 4x5), then
no possible assignment of the other parameters can lead to
an improvement over the current best prototype.

Models implement lower bound estimates according to how
they assign pixels to parts. If enough parameters have been
assigned to compute the actual pixels required by one or
more parts, the actual cost of those parts can be used. An
insight that allows re-use of previous computations is that
the cost of pixels within a particular part is at least as much
as any subarea of those pixels. If a model has previously
evaluated the true cost of a part, that cost can be used as a
lower bound in any assignment that grows the bounds of
that part. Lower bound correctness is required for the
branch-and-bound search, so models estimate a single pixel
for parts for which they cannot provide a tighter bound.

VALIDATION IN APPLICATIONS
Prefab demonstrates a new approach to enhancements
independent of the toolkits used to implement interfaces.
Because this is a fundamentally new capability, there is no
reasonable comparison to other approaches for obtaining
the same effect. We instead validate, demonstrate, and
provide insight into Prefab by implementing and discussing
a set of applications. We select these three applications with
the goal of illustrating a range of complexity.

All of our applications run on Microsoft Windows Vista
and are implemented in Microsoft’s C#, using redirection
mechanisms as discussed with Figure 2. In order to
demonstrate Prefab enhancements running on interfaces in
Macintosh OS X, we connect via remote desktop software.
Prefab thus continues to run on the Microsoft Windows
Vista machine, adding its enhancements based entirely on
the pixels delivered through the remote desktop connection.

Target Aware Pointing Techniques
As noted in our introduction, target-aware pointing
techniques, such as Grossman and Balakrishnan’s Bubble
Cursor [3] and Worden et al.’s Sticky Icons [24], have long
been known to have many potential advantages, but the
diversity of existing applications and toolkits continues to
limit their broader exploration and adoption. Identification
of targets across existing applications and toolkits is
sufficiently difficult that researchers have instead explored
other approaches to approximating the desired behavior,
such as target-agnostic pointing enhancements [23] and the
use of click location histories as proxies for targets [10].

Figure 7 shows a Prefab Bubble Cursor implementation in a
dialog from Windows Media Player on Microsoft Windows
Vista. Figure 1 shows the same Bubble Cursor in a Mozilla
Firefox dialog on Macintosh OS X (using the remote
desktop method discussed earlier) and in a YouTube movie
player on Microsoft Windows Vista. Our associated video
shows a similar implementation of Sticky Icons. To the best
of our knowledge, Prefab is the first approach to
implementing target-aware pointing techniques as general
enhancements across a variety of existing applications
independent of their underlying toolkit implementation.

These target-aware pointing techniques are straightforward
applications of Prefab. We extracted examples and built
prototypes to identify Microsoft Windows Vista and
Macintosh OS X buttons, checkboxes, textfields, and other
standard widgets. We similarly created several prototypes
of more specific widgets, such as the custom slider in the
YouTube movie player (based on the same models as the
standard widgets). These target-aware pointing techniques
require only the location and size of current targets, so did
not use it was not necessary to implement any transitions.
The Sticky Icons enhancement simply adjusts the mouse
gain, while the Bubble Cursor annotates the target window
and manipulates how click events are mapped to the source.

Phosphor
Baudisch et al. developed Phosphor, showing the use of
afterglows to explain user interface transitions [1]. One
potential benefit Baudisch et al. identify is in remote
collaboration, where the afterglow makes it easier to
determine what changes a remote collaborator has made in
an interface. Despite the promise of Phosphor, it has been
difficult to evaluate its effectiveness in realistic use or to
deploy it in collaborative meeting software.

Figure 7: Grossman and Balakrishnan’s Bubble Cursor
expands to ensure that the nearest target is selected [3].
Prefab can enable such target-aware pointing techniques
as general enhancements across a variety of applications
independent of their underlying toolkit implementation.

CHI 2010: Pixels and Perception April 10–15, 2010, Atlanta, GA, USA

1531

Figure 8 shows our Prefab implementation of Phosphor,
with afterglow effects showing recent manipulation of two
checkboxes and a slider in Windows Media Player on
Microsoft Windows Vista. Figure 1 shows the same code
creating Phosphor effects for Macintosh OS X widgets in
Apple’s iTunes (using the remote desktop method discussed
earlier). Note the afterglow applied to the sliders in these
figures includes a ghosted thumb, painted using the actual
thumb for those sliders. Also note these afterglows require
near instantaneous recognition of widget manipulation.
Because Prefab is based entirely on pixels, Phosphor could
be included in collaborative meeting software independent
of the toolkits used to implement shared applications.

Building upon the same prototypes from our target-aware
pointing demonstrations, our implementation of Phosphor
uses Prefab transitions to observe widget state changes.
These expire and are reset whenever a widget is observed in
the same state as the previous frame. A timeout on the
transition allows a widget a reasonable time interval to
animate into a new state, and we use output redirection to
superimpose our afterglow. The ghost of the slider’s actual
thumb is painted using the thumb feature from the Prefab
prototype that detects the slider, as illustrated in Figure 9.

Side Views Parameter Spectrums
Our previous applications show local widget enhancement,
but Prefab can also be used as part of larger enhancements.
To demonstrate this, we implemented Terry and Mynatt’s
Side Views parameter spectrums [22]. The goal of
parameter spectrums is to better support open-ended tasks
by simultaneously previewing a range of options for values
of multiple parameters. Terry and Mynatt showed
parameter spectrums for image editing filters in the GNU
Image Manipulation Program (the GIMP), chosen because
its open-source implementation allowed necessary
modifications. Despite the promise of this technique, the
closed-source nature of Adobe’s Photoshop prevents
researchers and practitioners from studying or deploying
parameter spectrums in this more widely-used package.
This problem is typical of situations where researchers and
practitioners find themselves unable to modify, personalize,
or interoperate with existing closed-source interfaces.

Figure 1 shows a parameter spectrum for an image filter in
Adobe Photoshop on Microsoft Windows Vista. Our
associated video also shows parameter spectrums for the
GIMP implemented without modifying its source. In both
cases, we use Prefab to interpret the filter dialogs and use
synthetic mouse events to manipulate sliders within the
filter dialogs to obtain images to populate the spectrums.
An eight-part prototype identifies the preview area in each
dialog, from which we extract the image for a particular
parameter configuration. An interesting difference between
the two is how our implementation determines when to
capture the preview image for a particular parameter
configuration. Photoshop provides a small progress bar at
the bottom-left of the filter dialog, and we use Prefab to
observe the completion of this progress bar before grabbing
the preview. The GIMP does not provide such a progress
bar, and so we monitor the contents of the preview area and
capture an image after observing a stable change. In both
cases, we use a timeout to recover from the situation where
Prefab does not observe the expected transition.

RELATED WORK
Hudson and Smith propose toolkit support for separating
interface style from content, drawing an analogy to painting
the same text with different fonts [7]. Hudson and Tanaka
build upon this, developing methods for painting highly
stylized widgets [8]. Hudson and Tanaka’s methods include
an eight-part border based in painting fixed corners and
variable edges, analogous to the eight-part model discussed
in this paper. Prefab turns these approaches to painting
widgets on their heads, separating recognition of interface
content (described by Prefab models) from style (described
by Prefab prototypes). Prefab is simultaneously informed
by the workings of user interface toolkits and independent
of a toolkit’s implementation: our eight-part model can
characterize many widgets regardless of whether they were
painted using Hudson and Tanaka’s eight-part method.

Edwards et al. [2] and Olsen et al. [13] develop approaches
to modifying and enhancing interfaces based on replacing
an application’s drawing object and intercepting application
commands (e.g., draw_line, draw_string). They require
minimal modification to applications (limiting relevance to
closed-source interfaces), but more importantly require
implementation particular to each toolkit. Our pixel-based
approach requires no modification to existing applications
and is independent of underlying toolkit implementation.

Hutchings and Stasko’s mudibo uses graphical interface
input and output redirection to present windows in multiple
locations, allowing a person to choose to interact with the
window in the desired location [11]. Tan et al.’s WinCuts
allows subdivision of windows using a copy-paste approach
to configuring redirection [21]. Stuerzlinger et al. present
advanced customizations in their work on User Interface
Facades, many based on toolkit-specific introspection [20].
These each use redirection mechanisms similar to those
from Figure 2, but are either limited by a lack of
meaningful interpretation of the source or rely upon toolkit

Figure 8: We have used Prefab to implement Baudisch
et al.’s Phosphor [1] based entirely on an interface’s pixels.

Figure 9: We use the image of the thumb from the slider’s
prototype to paint the ghosted thumb in the afterglow.

CHI 2010: Pixels and Perception April 10–15, 2010, Atlanta, GA, USA

1532

introspection for that interpretation. Our work is unique in
combining input and output redirection with pixel-based
interpretation, enabling interpretation-based modifications
independent of interface implementation mechanisms.

The most relevant prior work thus examines pixel-based
interpretation and manipulation of graphical user interfaces.
Olsen et al.’s ScreenCrayons builds upon the universality of
pixels, analyzing images of interfaces to associate ink
annotations, but does not interpret those images [14].
Classic work by Zettlemoyer et al. examines pixel-based
identification of widgets for IBOTS and VisMap [26, 27] in
the context of supporting interface agents and programming
by example [15, 18]. Zettlemoyer et al.’s methods require
code-based descriptions of the appearance of widgets, and
Zettlemoyer et al. report that 40% of VisMap code is
specific to the particular Microsoft Windows widgets it
recognized. Continued development of these methods in
Segman also found their performance insufficient for
interactive applications [19]. Prefab’s performance is an
obvious improvement, as is our use of example-based
prototype creation and the fact that none of our model code
is specific to any particular toolkit. Yeh et al. recently
developed Sikuli, which supports image-based interface
search and automation [25]. Sikuli uses computer vision
methods (template matching and voting based on invariant
local features), and Yeh et al. report these require 200msec
to identify all occurrences of a single target in an image of a
desktop. In contrast, recall that Prefab must identify many
prototypes many times per second. Hurst et al. use several
pixel-based techniques to improve the accessibility API’s
detection of target boundaries [9]. Their specific goals lead
them to leverage information unavailable in the general
interface interpretation problem (e.g., image differences
available only after a person clicks on a target), and they do
not generalize a notion of edges and corners to consider
different arrangements. Thus none of this prior work
leverages Prefab’s core insight of separating the modeling
of widget layout from the description of widget appearance.

DISCUSSION
Prefab represents a first step towards pixel-based reverse
engineering of interfaces based on models of how those
interfaces are painted by applications and user interface
toolkits. This section discusses several important aspects of
Prefab and identifies important directions for future work.

This paper intentionally presents the simplest description of
using a prototype library to reverse engineer an image,
focusing on information flow as Prefab locates features,
generates hypotheses, and tests those hypotheses. There are
many opportunities for principled optimizations. The most
important is probably that most pixels do not change
between successive frames. Prefab’s entire process can be
implemented with incremental evaluation, using lightweight
dataflow to re-compute exactly the features and prototypes
that could possibly have changed as a result of differences
between successive frames [5]. Prefab’s entire process also
supports a multi-core approach, as feature detection can be

applied to multiple pixels simultaneously, multiple models
can simultaneously generate hypotheses from detected
features, and those hypotheses can be tested in parallel. It is
also possible to vastly reduce the number of pixels that
must be tested for features in each image. If every feature
contains at least two adjacent pixels, for example, only half
the pixels in an image need to be tested. Given these and
other opportunities for principled optimization, we do not
foresee performance as problematic for most applications.
Our current single-threaded implementation uses a simple
ad-hoc frame difference optimization, and our associated
video shows multiple applications recognizing prototypes in
real interfaces of existing applications with frame-to-frame
computations typically well under 50msec.

Not all interfaces are created entirely from standard
widgets. Prefab can still be effective in such interfaces for
two reasons. First, even non-standard interfaces are
procedurally generated. Once a prototype of such an
interface is created, it is unlikely to change. Second,
non-standard interfaces cannot be generally successful
unless they look like an interface. Prefab may ultimately
prove to be a more reliable approach to non-standard
interfaces because it is based on their appearance instead of
toolkit introspection mechanisms that developers often
neglect to implement in non-standard components.

We have shown that a number of interesting applications
are enabled by Prefab’s current implementation, but Prefab
also currently has several important limitations. There is
currently no structured approach to interpreting the content
portions of prototype occurrences (e.g., Prefab can identify
the three buttons in Figure 5, but not the fact that they are
labeled “A”, “B”, and “C”). Prefab transitions allow
monitoring of simple dynamics, but are defined at such a
low level that they can be tedious to configure in large
enhancements. Prefab would thus benefit from an approach
to modeling state machine relations among prototypes
corresponding to the different states of a widget as well as
improved approaches to managing other common types of
related transitions (e.g., animations). Prefab also currently
does not model relationships among widgets, and so does
not have an understanding of the behavior of group of radio
buttons or the hidden content associated with a scroll pane
or a tab panel. We ultimately intend for Prefab to support a
wide variety of applications beyond those explored in this
paper, such as accessibility enhancements, tutorials for
off-the-shelf software, context-sensitive help mechanisms,
and CSCW extensions to existing applications. Whether
Prefab’s current limitations are problematic depends upon
the intended enhancement. In the case of accessibility
enhancements, for example, Prefab can enable target-aware
techniques with significant implications for people with
motor impairments, but the lack of content interpretation
means Prefab cannot be used to implement screen reading
for people for visual impairments. Finally, we note it is also
non-trivial to create sophisticated models. We have stated
that we believe this effort can be justified if the resulting

CHI 2010: Pixels and Perception April 10–15, 2010, Atlanta, GA, USA

1533

model applies to a large and wide variety of prototypes, but
improved authoring tools also warrant serious exploration.
We see all of these limitations as rich areas for future work.

CONCLUSION
Prefab contributes pixel-based reverse engineering of
interfaces that separates modeling of widget layout from
recognition of widget appearance, Prefab enables a practical
approach to adding advanced behaviors to new and existing
interfaces independent of particular user interface toolkits.
In addition to its direct implications for human-computer
interaction research and practice, we hope Prefab can help
to break some of the critical mass and chicken-and-egg
problems currently limiting user interface tools research.

ACKNOWLEDGEMENTS
We thank Jeff Bigham, Scott Hudson, Brian Meyers, Steve Seitz and
Greg Smith for discussions related to this work. This work was
supported in part by the UW CSE Hacherl Graduate Fellowship and
by a fellowship from the Seattle Chapter of the ARCS Foundation.

REFERENCES
[1] Baudisch, P., Tan, D.S., Collomb, M., Robbins, D., Hinckley, K.,

Agrawala, M., Zhao, S. and Ramos, G. (2006). Phosphor:
Explaining Transitions in the User Interface using Afterglow
Effects. Proc. of the ACM Symposium on User Interface
Software and Technology (UIST 2006), 169-178.

[2] Edwards, W.K., Hudson, S.E., Marinacci, J., Rodenstein, R.,
Rodriguez, T. and Smith, I. (1997). Systematic Output Modification
in a 2D User Interface Toolkit. Proc. of the ACM Symposium on
User Interface Software and Technology (UIST 1997), 151-158.

[3] Grossman, T. and Balakrishnan, R. (2005). The Bubble Cursor:
Enhancing Target Acquisition by Dynamic Resizing of the
Cursor's Activation Area. Proc. of the ACM Conference on
Human Factors in Computing Systems (CHI 2005), 281-290.

[4] Hartmann, B., Wu, L., Collins, K. and Klemmer, S.R. (2007).
Programming by a Sample: Rapidly Creating Web Applications
with d.Mix. Proc. of the ACM Symposium on User Interface
Software and Technology (UIST 2007), 241-250.

[5] Hudson, S.E. (1991). Incremental Attribute Evaluation: A Flexible
Algorithm for Lazy Update. ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(3). 315-341.

[6] Hudson, S.E., Mankoff, J. and Smith, I. (2005). Extensible Input
Handling in the subArctic Toolkit. Proc. of the ACM Conference
on Human Factors in Computing Systems (CHI 2005), 381-390.

[7] Hudson, S.E. and Smith, I. (1997). Supporting Dynamic
Downloadable Appearances in an Extensible User Interface
Toolkit. Proc. of the ACM Symposium on User Interface
Software and Technology (UIST 1997), 159-168.

[8] Hudson, S.E. and Tanaka, K. (2000). Providing Visually Rich
Resizable Images for User Interface Components. Proc. of the
ACM Symposium on User Interface Software and Technology
(UIST 2000), 227-235.

[9] Hurst, A., Hudson, S.E. and Mankoff, J. (2010). Automatically
Identifying Targets Users Interact with During Real World
Tasks. Proc. of the International Conference on Intelligent User
Interfaces (IUI 2010), To Appear.

[10] Hurst, A., Mankoff, J., Dey, A.K. and Hudson, S.E. (2007). Dirty
Desktops: Using a Patina of Magnetic Mouse Dust to Make
Common Interactor Targets Easier to Select. Proc. of the ACM
Symposium on User Interface Software and Technology (UIST
2007), 183-186.

[11] Hutchings, D.R. and Stasko, J. (2005). mudibo: Multiple Dialog
Boxes for Multiple Monitors. Extended Abstracts of the ACM
Conference on Human Factors in Computing Systems (CHI
2005), 1471-1474.

[12] Myers, B.A., Hudson, S.E. and Pausch, R. (2000). Past, Present,
and Future of User Interface Software Tools. ACM Transactions
on Computer-Human Interaction (TOCHI), 7(1). 3-28.

[13] Olsen, D.R., Hudson, S.E., Verratti, T., Heiner, J.M. and Phelps,
M. (1999). Implementing Interface Attachments Based on
Surface Representations. Proc. of the ACM Conference on
Human Factors in Computing Systems (CHI 1999), 191-198.

[14] Olsen, D.R., Taufer, T. and Fails, J.A. (2004). ScreenCrayons:
Annotating Anything. Proc. of the ACM Symposium on User
Interface Software and Technology (UIST 2004), 165-174.

[15] Potter, R. (1993). Triggers: Guiding Automaton with Pixel to
Achieve Data Access. A. Cypher, eds. MIT Press.

[16] Rissanen, J. (1978). Modeling by Shortest Data Description.
Automatica 14(5). 465-471.

[17] Russell, S. and Norvig, P. (2002). Artificial Intelligence: A
Modern Approach. Prentice Hall.

[18] St. Amant, R., Lieberman, H., Potter, R. and Zettlemoyer, L.S.
(2000). Visual Generalization in Programming by Example.
Communications of the ACM 43(3). 107-114.

[19] St. Amant, R., Riedl, M.O., Ritter, F.E. and Reifers, A. (2005).
Image Processing in Cognitive Models with SegMan. Proc. of
the International Conference on Human-Computer Interaction
(HCII 2005).

[20] Stuerzlinger, W., Chapuis, O., Phillips, D. and Roussel, N.
(2006). User Interface Façades: Towards Fully Adaptable User
Interfaces. Proc. of the ACM Symposium on User Interface
Software and Technology (UIST 2006), 309-318.

[21] Tan, D.S., Meyers, B.R. and Czerwinski, M. (2004). WinCuts:
Manipulating Arbitrary Window Regions for More Effective Use
of Screen Space. Extended Abstracts of the ACM Conference on
Human Factors in Computing Systems (CHI 2004), 1525-1528.

[22] Terry, M. and Mynatt, E.D. (2002). Side Views: Persistent,
On-Demand Previews for Open-Ended Tasks. Proc. of the ACM
Symposium on User Interface Software and Technology (UIST
2002), 71-80.

[23] Wobbrock, J.O., Fogarty, J., Liu, S., Kimuro, S. and Harada, S.
(2009). The Angle Mouse: Target-Agnostic Dynamic Gain
Adjustment Based on Angular Deviation. Proc. of the ACM
Conference on Human Factors in Computing Systems (CHI
2009), 1401-1410.

[24] Worden, A., Walker, N., Bharat, K. and Hudson, S.E. (1997).
Making Computers Easier for Older Adults to Use: Area Cursors
and Sticky Icons. Proc. of the ACM Conference on Human
Factors in Computing Systems (CHI 1997), 266-271.

[25] Yeh, T., Change, T.-H. and Miller, R.C. (2009). Sikuli: Using
GUI Screenshots for Search and Automation. Proc. of the ACM
Symposium on User Interface Software and Technology (UIST
2009), 183-192.

[26] Zettlemoyer, L.S. and St. Amant, R. (1999). A Visual Medium
for Programmatic Control of Interactive Applications. Proc. of
the ACM Conference on Human Factors in Computing Systems
(CHI 1999), 199-206.

[27] Zettlemoyer, L.S., St. Amant, R. and Dulberg, M.S. (1998).
IBOTS: Agent Control Through the User Interface. Proc. of the
International Conference on Intelligent User Interfaces (IUI 1998),
31-37.

CHI 2010: Pixels and Perception April 10–15, 2010, Atlanta, GA, USA

1534

