
How Power Users Help and Hinder Open Bug Reporting
Andrew J. Ko and Parmit K. Chilana

The Information School | DUB Group
University of Washington
{ajko, pchilana}@uw.edu

ABSTRACT
Many power users that contribute to open source projects
have no intention of becoming regular contributors; they just
want a bug fixed or a feature implemented. How often do
these users participate in open source projects and what do
they contribute? To investigate these questions, we analyzed
the reports of Mozilla contributors who reported problems
but were never assigned problems to fix. These analyses
revealed that over 11 years and millions of reports, most of
these 150,000 users reported non-issues that devolved into
technical support, redundant reports with little new
information, or narrow, expert feature requests. Reports that
did lead to changes were reported by a comparably small
group of experienced, frequent reporters, mostly before the
release of Firefox 1. These results suggest that the primary
value of open bug reporting is in recruiting talented reporters,
and not in deriving value from the masses.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces], D.2.5 Testing and
Debugging.

General Terms
Design, Human Factors.

Keywords
Open source software, Bugzilla, Mozilla, Firefox

INTRODUCTION
Of all aspects of open source software (OSS) development,
one of the most user-centered is that anyone can report
problems that they find [12]. While in all likelihood, it is
mostly power users who report problems, this idea still has
fascinating implications for HCI, user-centered design, and
the dialog between developers and user communities. For
example, not only can power users report bugs such as
crashes and data loss, but they can also identify design issues
and advocate for less technical users they represent in their
jobs. Moreover, they can provide this feedback to developers
directly, rather than through traditionally slow and opaque
technical support channels.

With many OSS projects now more than a decade old, we
can finally ask the question: how good are power users at
actually reporting software problems? Do tech savvy early
adopters identify issues that core OSS developers do not?

When these users report problems? And do any “regular”
users report problems? Prior work has repeatedly shown that
users write reports [2,11], and that some of these users
become active OSS developers [8,9], but no studies have
considered the long-term value of these crowdsourcing
quality assurance to the public. For any software team
considering whether to maintain an open bug reporting
community, answering these cost/benefit questions is of
critical importance. Moreover, through such an analysis, we
may identify better ways to design open bug reporting tools
to maximize the values that users provide.

To this end, we contribute a comprehensive analysis of the
bug report contributions to Mozilla project, which is well-
known for its transparent process and public participation in
the development of the Firefox web browser. From its bug
report repository of nearly a half million bug reports, we first
take a bird’s eye, quantitative view of user contributions, and
then a more detailed, qualitative look at user comments and
developers’ reactions to them. Through these analyses, we
found that over the past 11 years, most of the 150,000 users
in this group reported either non-issues that devolved into
technical support, redundant reports with little new
information, or narrow expert feature requests. Reports that
did lead to changes were reported by a comparably small
group of about 8,000 experienced, frequent reporters and
largely before the release of Firefox 1.

These results suggest that the value to be obtained from open
bug reporting repositories is primarily in recruiting and
retaining talented developers and reporters, and not in
deriving value from the masses. This is in contrast to other
forms of crowdsourcing, where much of the value is in the
long tail of contributions. We discuss the implications of
these findings on software development and on the design of
bug reporting tools, and suggest several ways that open bug
reporting tools might be redesigned to incentivize more
helpful user contributions.

RELATED WORK
While there has been a considerable study of open source
software development, little has focused specifically on the
interactions between users and developers in bug reporting.
The study most closely related to ours surveyed and
compared the opinions of open source developers and bug
reporters in Mozilla and other communities, finding a
mismatch in what content each group viewed as important in
a bug report [2]. In free response questions, developers had
several insights: “there is a big gap with the knowledge level
of bug reporters,” “If people open rude or sarcastic bugs, it
doesn’t help their chances of getting their issues addressed”,
“Bugs are often used to debate the relative importance of
various issues. This debate tends to spam the bugs with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

CHI 2010: Expertise April 10–15, 2010, Atlanta, GA, USA

1665

various use cases and discussions [...] making it harder to
locate the technical arguments often necessary for fixing the
bugs,” and, “Well known reporters usually get more
consideration than unknown reporters, assuming the reporter
has a pretty good history in bug reporting.” Our study is an
opportunity to evaluate these claims quantitatively and to
discover new trends unknown to OSS developers.

Other work has considered interactions between users and
developers in other contexts. For example, Hendry’s analysis
of the role of users in development of del.icio.us showed that
many users offered creative input, offering appeals to
personal experience, scenario, and observed use [6]. Another
study considered help seeking in open source forums, finding
a variety of “me too” messages that provided emotional
support and rapid problem diagnosis [14]. These studies
demonstrate that in some contexts, interactions between
developers and users can be mutually beneficial.

The majority of other research on OSS communities focuses
on the coordination necessary to develop software. For
example, one of the most commonly cited findings is that
open source communities are like “onions,” with increasingly
large groups of less technically savvy contributors [4]. At the
core are a small team of (often collocated) developers;
around them are volunteer developers who contribute
regularly; beyond this group are bug reporters, source code
readers, and finally passive users of the project’s software.
Theoretically, each of these successive groups is an order an
of magnitude larger than the last.

As part of this model, several have studied the transitions that
users make to become active developers. For example, van
Krogh et al. studied the Freenet community with interviews,
finding that the core community of developers made explicit
rules that must be followed to join the community, based on
merit [9] Similarly, Herraiz et al. studied the GNOME
version control system, finding that hired developers follow
similar patterns as volunteers to the project, but acquire
status and reputation faster than volunteers [7]. Other
studies demonstrate most core developers in the Mozilla,
Apache, and NetBeans projects are full-time employees of
corporate or non-profit organizations, not volunteers [8],
and that volunteers are primarily distinguished by their
success at several merit-based rites of passage [5]. Our
study differs from these in that we consider bug reporters
who contribute infrequently or only once.

Other research focuses more on coordination aspects of open
source communities. For example, Mockus et al. contrasted
the early history of the Apache and Mozilla projects, showing
that Apache’s coordination concerns were reduced by virtue
of its architecture, allowing developers to contribute quickly
and independently [11]. In contrast, Mozilla had significant
interdependence between its modules, leading to the notion
of module owners. Mockus et al. argue that this more formal
means of coordination led Mozilla to delegate much of the
bug fixing and finding to the user community. Several
researchers have studied the manifestation of these
coordination challenges in bug reports [13], mailing lists [1],
email and CVS [15], and forums [10]. These studies show
that OSS cultures are often biased towards action first and

coordination later. We know of no studies that consider how
users may help or hinder these coordination efforts.

In summary, prior work shows that open source communities
use lightweight communication tools to coordinate and rites
and reputation to foster a community of trusted developers.
The primary question posed in our study is to what extent
open source communities benefit from the broader user
population through bug reporting and how bug reporting
tools might be improved to encourage helpful contributions.

METHOD
We divide our assessment of user contributions to the
Mozilla bug repository into three major sections:

1) Separating contributors into four categories of core
and active developers, reporters, and users.

2) Analyzing the outcomes of reports written by
different contributor groups.

3) Analyzing user and reporter comments in both
routine and contentious reports, and developers
responses.

Our choice of Mozilla was based on several factors. It is one
of the most successful user-facing open source communities,
and was likely to exhibit less of the hacker culture attributed
to some OSS projects. Mozilla products are also respected as
usable software, partly due to the fact that the Mozilla
corporation employs user experience designers. Furthermore,
at over a decade old, we would be able to analyze user
contributions to Mozilla products over time and multiple
substantial releases, revealing how participation changes over
the course of years. Finally, while Mozilla involves several
different projects, we chose to analyze them together because
of their shared source code foundation and contributor
communities.

Our data set was the Mozilla Bugzilla bug report repository
(bugzilla.mozilla.org). We downloaded all bug reports as
XML using standard HTTP queries on August 14th and 15th,
2009. This data set included 496,766 reports, with creation
dates as early as September of 1994. Not all reports were
publicly accessible; 14,049 were only available to
contributors with special permissions. Much of the data we
report on in this paper was extracted, aggregated, and joined
with Perl scripts and special care was taken to test their
correctness through extensive error handling and assertions
(for example, tests for missing values, invalid nominal data,
and incidental case mismatch).

In terms of the data reported in this paper, all distributions in
followed power law distributions (as with most social
systems), unless otherwise noted. Consequently, we primarily
report medians instead of means. All statistical inferences
were non-parametric, unless otherwise noted. We primarily
used chi-squared tests, Wilcoxon rank sums tests with chi-
squared approximations (abbreviated RS), and multinominal
logistic regressions with chi-squared approximations
(abbreviated MLR), all performed in JMP. Significant post
hoc comparisons were generally performed by comparing
chi-squared values with critical values at the α = .01 level.

CHI 2010: Expertise April 10–15, 2010, Atlanta, GA, USA

1666

CLASSIFYING BUG REPORT CONTRIBUTORS
Before assessing the user contributions to the Mozilla
repository, we first needed to define users. We followed the
“onion model” [4], which groups contributors into core and
active developers, bug reporters, and passive users (among
other more subtle groups outside of our scope). To identify
contributors, we used the email addresses attached to reports
and report comments, revealing 152,877 unique addresses
(excluding nobody@mozilla.org). Some contributors used
multiple addresses, evident from their reminders to use an
alternate; other addresses may have represented multiple
people. We did not try to merge addresses or differentiate
comments from the same address, and so when we refer to
“contributors,” we are actually referring to email addresses.

To group these addresses, we used three measures. The first
was whether a contributor had a @formerly-netscape.com.tld
addresses or was listed on the Mozilla website as a member
of one of the following groups: release drivers (who guide
and manage fixes towards releases), super reviewers (who
perform code reviews), module owners (who manage
changes to “coherent bundles of source files”), peers (who
help to module owners). This group, which we call CORE

developers, included 928 email addresses. The next factor we
used was whether the contributor had been assigned any
reports, including 2,568 contributors. In Mozilla, policies
state that the assignee of a bug should be the person “leading
the effort to fix the bug” so we refer to these contributors as
ACTIVE developers. The third factor we used was whether a
contributor had reported at at least one bug; 119,707 of the
remaining contributors satisfied this criteria, forming a group
we will call REPORTERS. The remaining 29,674 contributors
will be referred to as USERS, though we are careful to point
out most of these contributors were probably power users
like everyone else. USER contributions, by our definition,
were limited to bug report comments and file attachments.

It should be noted that our grouping of contributors is based
on a snapshot of the Mozilla website, and cumulative counts
of report submissions and assignments. Therefore, each
contributor was classified based on their history of
contributions and not on their contributions at the time of
reporting. How this affect our results is unknown;
understanding contributions over time would be an useful
direction for future work.

Descriptive and summary statistics for the groups are shown
in Table 1. REPORTERS, by far the largest group, contributed
19% of comments, with most comments contributed by
developers. The median USER and REPORTER commented on

1 report and the median REPORTER reported just 1 report; in
fact, 64% of reporters only ever contributed to 1 bug. In
comparison, the median CORE and ACTIVE developers
reported and commented on an order of magnitude more.

To establish some convergent validity for our measures, we
compared the product and component fields of the reports of
each group. Groups differed significantly across both product
(χ2(df=135, n=496,750)=83,406, p<.0001) and component (χ2

(df=1,827, n=496,750)=139,846, p<.0001). With respect to
product, REPORTERS were more likely to report issues tagged
Firefox, SeaMonkey, and Thunderbird (Mozilla’s user facing
products) than CORE or ACTIVE developers, while developers
were significantly more likely to report on Core. With respect
to component, the REPORTER reports were more likely to be
tagged as General, Tabbed Browsing, Plug-Ins, Bookmarks,
Preferences and History. These differences lend some
convergent validity to our definitions.

In addition to this topical trends, it is also helpful to see
associations between the four groups and their contributions
over time. Figure 1 shows the number of contributors
commenting every six months since Netscape released their
source code in March 1998. Several things are evident from
this graph. First, the USER and REPORTER groups are the
only groups that fluctuate substantially in their contributions
over time; the CORE and ACTIVE developers, in contrast,
wrote a comparable number of comments each six months.
Furthermore, as seen just before the release of Firefox 0.1, 1,
2 and 3, the USER and REPORTER groups grow until a major
release, then drop off, then rise again before the next release.
Because Mozilla software is updated regularly, this behavior
is to be expected, with REPORTERS and USERS acting as beta
testers, reporting on issues before each major release.

���������������
������
 ��������
� ������������������

����� ��	
���
 ��� ��
���
���� �����
�����
����� ��
�����
������ �����

�����
����� ��
�����
������ �����

�����
�����

CORE ����������	
������������
	�������
�������������������

��� ��������������� ������� ��� ���������������� ��������� ��� �������������� ������ ���

ACTIVE ���	������������� ����� ��������������� ������� ��� ��������������� ��������� ��� ������������� ������� ���

REPORTERS ��!�	"��������� ������� ������������� ������� ��� ������������� ������� ��� ����������� ������� !�

USERS ����� #���$����� ��� ������ ������������� ������ �� ������������� ������ �� ��������� � ��

 � �� ������� % % % ��������� % �������

Table 1. Definitions and aggregate statistics for each of the four contributor groups. In bold: reporters were the largest group,
commenting on two thirds of reports and reporting more than half of reports.

��

&'����

('����

)'����

�'����

��'����

�&'����

*
+,

���
��

-.
/�
��
��

0
12

���
��

3
45

���
��

*
+,

���
��

-.
/�
��

&�

0
12

���
&�

3
45

���
6�

3
78

���
(�

9+
:�
��

;�

<
=>

���
;�

94
?��
�)

�

3
78

���
��

9+
:�
��
��

<
=>

���
��

8.718>.8@

4@.8@�

+=A2.�

=18.�

�	
�������
�	
�����

�	
�����

�	
�����

Figure 1. The number comment contributors, stacked by type,
in each six month period since the release of the Netscape code.

REPORTER and USER comments decrease after each release.

CHI 2010: Expertise April 10–15, 2010, Atlanta, GA, USA

1667

ANALYZING REPORT RESOLUTION
Having grouped contributors, we now move on to assess
whether the contributions made by USERS and REPORTERS

were of value to Mozilla. We operationalize value as the
resolution field of bug reports with 8 levels. Mozilla policies
state the meaning of each level as follows: fixed reports lead
to a change in the software (a patch); incomplete reports are
missing data needed to fix an issue; invalid reports identify a
problem, but not one that Mozilla was responsible for fixing;
worksforme reports did not involve a problem; wontfix
reports identify issues that the community decided not to
address; and duplicate reports regard issues that have already
been reported. We omit the expired and moved resolutions
from our analyses, since they were used infrequently.

As shown in Figure 2, there is a significant relationship
between reporter type and the report resolution (χ2(df=21,
n=420,989)=117,303, p<.0001). About 62% of ACTIVE

reports and 60% CORE reports are marked fixed, and these
account for 79% of all fixed bugs. In contrast, 13% of
REPORTER reports are marked fixed, accounting for 21% of
fixed reports. About 40% of REPORTER reports are marked as
duplicates, whereas the rest were mostly marked worksforme
and invalid. Of the 119,707 REPORTERS, just 16,428 (14%)
were responsible for the fixed reports. Of these, 65% had
reported 2 or more reports, showing that experience was
related to successfully reports.

How do REPORTERs’ fixed reports differ from developers’?
The product fields of REPORTER reports were significantly
more likely to be Tech Evangelism, Firefox, SeaMonkey, and
Thunderbird χ2(df=135, n=148,902)=15,854, p < .0001.
Moreover, the severity flag of REPORTER reports (set by
reporters at reporting time), was significantly more likely to
be marked critical, major, or enhancement and not normal
(χ2(df=18, n=148,902)=4,477,p<.0001).

Fixed REPORTER reports were also open significantly longer
(measured from the date of creation to the date of closing)
than ACTIVE and CORE reports (RS χ2(df=3,n=148,902)
=15,854,p<.0001). The median fixed REPORTER report was
open for 371 days whereas the median fixed ACTIVE report
was open for 123 and CORE was 119. This difference was not
due to a delay in response: the median number of hours
before the first developer reply was median of 5 hours across
all divisions by reporter type and resolution. However, the
days between the first patch being posted (defined later in the
attachments section) and the bug being closed was
significantly longer for REPORTER reports (RS χ2(df=1,
n=84253)=1046,p<.0001).

Reporter Duplicates were Mostly Redundant
What were the outcomes of the 96,219 duplicate REPORTER

reports (which accounted for 40% of their reports and 22% of
all reports)? For each duplicate, we checked the resolution of
the report that the duplicate referred to (checking its ������
field). When these pointed to other duplicates, our scripts
recursively followed duplicate pointers until finding a non-
duplicate report (6 reports were cyclic and were excluded
from our analyses). Overall, 77% of duplicates referred to
fixed reports and 73% of REPORTER duplicates referred to
fixed reports. Duplicates by different reporter types referred
to reports with significantly different resolutions (χ2(df=21,
n=102,355)=2300,p<.0001): REPORTER duplicates were
more likely to refer to worksforme, wontfix, or invalid issues.

We can also consider the 44,819 non-duplicate reports to
which duplicates referred. These were significantly more
likely to get fixed than bugs without duplicates (χ2(df=7,
n=421,005)=13,449,p<.0001); one would expect widely
reported issues to be addressed. However, when considering
what proportion of these duplicates were reported by
REPORTERS, the distribution is bimodal: in 52% of
duplicated reports, REPORTERS were the only duplicate
reporters; in 30%, there were no REPORTER duplicates; the
remaining 18% had both REPORTER and developer
duplicates. There is also a significant relationship between
the resolution of duplicated reports and the proportion of
REPORTER duplicates: (MLR χ2(df=6,n=35,656)=2805,p<.
0001): as the proportion of reporter duplicates increases, so
does the likelihood of it being marked worksforme or invalid.

To whose reports did REPORTER duplicates point? Of the
96,219 REPORTER duplicates, 56% were directed at other
REPORTER reports, 65% of which were fixed. The other 44%
of REPORTER duplicates were directed at ACTIVE and CORE

reports, 84% of which were fixed. In these latter cases, it was
possible that REPORTERS were actually first to report, but
their reports were labeled duplicate anyway. In comparing
REPORTER report creation times to the reports they referred
to, this was true for only 8% of REPORTER duplicates.

What was the time frame in which REPORTERS reported
duplicates, relative to the reports to which they referred?
Across all REPORTER duplicates, 5% reported on the same
day, 15% were reported between a day and 1 week after, 5%
were reported within a month, 40% were reported between a
a month and a year, and the remaining 30% were reported
more than a year after. This does not necessarily mean that
users were not contributing new information, since the
median number of days a report with duplicates was open
was 760 days. However, we used the report attachment data
described in the next section and found that of the 55% of
REPORTER duplicates that pointed to reports with patches,
66% were created after developers attached the first patch
(and more were likely written after the problem had been
diagnosed). In other words, most reporter duplicates were
reported well after a draft patch had been authored.

Given these results, what value did REPORTERS contribute
through duplicates? A small proportion were the first to
report an issue, but the vast majority were reporting on issues
that were already known and already being fixed.

�B�
��B�
	�B�

�B�
��B�
��B�
�B�
��B�
��B�
��B�
���B�

��������� ������ �����

�C��������

�����������

��	
���

���������

�	������

�����

Figure 2. Resolution by reporter type. Few REPORTER reports
are resolved as fixed; most are resolved as duplicate.

CHI 2010: Expertise April 10–15, 2010, Atlanta, GA, USA

1668

Reportersʼ Mostly Attached Screenshots
Another form of contribution was attachments to bug reports.
These included logs, images, error messages, code patches,
test cases, and other information intended to facilitate
problem diagnosis. As shown in Table 2, there were 389,059
attachments across 162,228 reports, by 24,462 unique
contributors, most of whom were REPORTERS. Overall,
8,723, or 6% of fixed bugs contained REPORTER attachments.

To analyze these, we converted the MIME type of the file
and the attachment description into one of patch, plain (a file
of unspecified type), test, image, html, log, stack, or other.
The most common REPORTER attachments were images and
test cases, where as most developer attachments were
patches. Of all reports with patches, 23% of REPORTER

attachments were added before the first patch, 50% were
added on the same day, and 27% were added after.

The resolution of reports was significantly related to the
number of REPORTER’ attachments on a report (MLR χ2

(df=7,n=421,005)=713, p<.0001). As the number of
REPORTER attachments increases, the likelihood of the report
being marked worksforme increases as the likelihood of fixed
decreases. In other words, a predominance of reporter
attachments was associated with non-issues.

Reporter Contributions are Less Frequent, Less Useful
When REPORTERs’ report resolutions are shown over time,
as in Figures 3–5, we see a more nuanced view of their
contributions. In Figure 3, we see that the number of
REPORTER reports has been dropping since the 0.1 release of
Firefox, and the number of fixed reports has dropped with it.
In Figure 4, we see that the proportion of REPORTERs’ report
resolutions have stabilized, except for an increase in invalid
and incomplete reports after the release of Firefox 1.0. In
Figure 5, we see that the proportion of fixed reports due to
REPORTERS reached its peak with the release of Firefox 1.0,
and has dropped since. In fact, of REPORTERS fixed reports,
69% were fixed before the Firefox 1 release.

In comparing the topic of reports, the product fields of
reports created before and after the Firefox 1.0 release were
significantly different (χ2(df=45, n=496,766)=188,985, p < .
0001): before, reports were more likely to be about Core and
after, reports were more likely to be about Firefox,
Thunderbird, and mozilla.org. The same was true for the
component field of reports (χ2(df=609, n=496,766)=195,002,
p < .0001): reports after the initial release were more likely to
be about General or user interface components.

There are a several of interpretations of these trends. For
example, perhaps most REPORTER effort before the release of
Firefox 1.0 was from technically skilled REPORTERS,
enthusiastic about the first release of the browser, but after

this, less technically skilled REPORTERS dominated the
reporting class, leading to more incomplete and invalid
reports and fewer fixed reports. It is also possible that those
REPORTER reports that would have been marked fixed began
being marked duplicate instead, as ACTIVE developers
became better at finding and reporting problems before
REPORTERS reported them. Another interpretation is that as
Mozilla software improved, there were fewer issues to report,
and those issues that were reported were simply more trivial
than the issues before the Firefox 1.0 release (perhaps
because core Mozilla developers were focusing on repairing
problems with the existing design, rather than evolving the
design to satisfy new requirements). Whatever the case, one
thing is clear: most of the valued REPORTER contributions
occurred before the release of Firefox 1.0.

��

�����

�����

�����

�����

������

������

�
��

���
��

�
��

���
��

��
��

��
��

	

��

��
��

��

���
��

�
��

���
��

3

�

���
��

��

���
��

��
��

��
��

�
��

���
��

3

�

���
D�

��

���
��

��
��

��
��

�
��

���
��

3

�

���
��

�
����� ��

����!��� ��

"��#�$�

"��%E&��!��

��������

'$���

(
)������

(
)����

(
)����
(
)����

Figure 3. # of REPORTER reports by resolution per 9 months.

�*�
��*�
��*�
��*�
��*�
D�*�
��*�
��*�
��*�
��*�

���*�

��

���
��

�
��

���
��

��
��

��
��

	

��

��
��

��

���
��

�
��

���
��

3

�

���
��

��

���
��

��
��

��
��

�
��

���
��

3

�

���
D�

��

���
��

��
��

��
��

�
��

���
��

3

�

���
��

�
����� ��

����!��� ��

"��#�$�

"��%E&��!��

��������

'$���

(
)������
(
)����

(
)����
(
)����

Figure 4. % of REPORTER report resolutions per 9 months.

�B�

��B�

 �B�

+�B�

��B�

!��B�

�8

�,�
��

�
��

���
��

��
7�
��
��

�C
:�
�	
	�

�8

��	
��

1�

��	
��

3
C�

��	
��

��

��	
��

��
��
�	
��

1�

��	
��

3
C�

��	
��

��

��	
��

��
��
�	
��

1�

��	
��

3
C�

��	
��

�18��

������

8�718��8�

�	
�������

�	
�����

�	
����� �	
�����

Figure 5. % of fixed reports by reporter type per 9 months.

�����
���

�����
���������

�"��#�����
�������������"��#���

������$������� ���"��#��
� ����#� ����
����� ���%���$ ������� ����� #��� ��#��
������������

&'���(
CORE ��� ������ ��� ������� ��� ��� �� ��� �� �� �� ���
ACTIVE ����� ������ ��� ������� ��� ��� �� ��� �� �� �� ���
REPORTERS ������ ������))� ������ �� ��� �� ��� *�� �� ��� ��
USERS ����� ����� ��� ����� ��� ��� �� ��� ��� �� ��� ���
 � �� ������ �������

Table 2. Attachment types by contributor groups and the proportion replied to by developers. In bold: most contributors who
added attachments were REPORTERS who tended to attach images to reports that were not marked fixed.

CHI 2010: Expertise April 10–15, 2010, Atlanta, GA, USA

1669

ANALYZING REPORT COMMENTS
Thus far in our assessment of REPORTER contributions, we
have found that most REPORTER reports were not fixed, that
those that were fixed were reported by REPORTERS with
substantial reporting experience before Firefox 1.0, and that
REPORTER duplicates are usually reported after the issue was
known and in repair. This does not mean, however, that less
experienced REPORTERS did not make valuable, but more
subjective contributions to report resolution through the
report comments used to coordinate the resolution of a bug
reoprt. For example, REPORTER duplicates may have helped
developers identify other cases in which a problem occurs, or
REPORTER and USER may have helped diagnose issues or
offered user-centered solutions to design problems.

To investigate these possibilities, in this section we inspect
small samples of representative reports with USER and
REPORTER comments. To inform what kinds of reports to
sample, we analyzed who was involved in report discussions
by tabulating all reports against whether they involved each
of our four contributor types. This revealed the four clusters
shown in Table 3: those with only ACTIVE and CORE
comments (40%), those with REPORTER, ACTIVE, and CORE
comments (52%), those including all types, including USERS
(5%), and those with only REPORTER comments (3%).

Of these, we were not concerned with the developer only
reports, since those have been studied elsewhere [1,13].
Moreover, nearly all of the 3% of REPORTER only reports
were marked duplicate, worksforme, and invalid, so we
decided to pool these with other reports with these
resolutions. However, 5% of reports with USER participation
were different from other reports, as they were significantly
more likely to be marked worksforme and invalid χ2(df=7,
n=421,005)=2619, p<.0001) and they had significantly more
comments (RS χ 2(df=1,n=496766)=16206,p<.0001) and
commenters (RS χ2(df=1,n=496766)=27405,p<.0001). These
5% of reports alone contained 12% of all reports’ comments.

Given these results, we decided to divide our analyses into
two sets: (1) routine reports involving REPORTERS and any
combination of developers and (2) contentious reports,
involving USER comments. Furthermore, we divided our
analyses of routine reports by resolution (again omitting
expired and moved reports because of their infrequency).

What follows is an inspection of REPORTER and USER
comments in these various reports types, based on random
samples of 100 reports (and 40 contentious reports). Quotes
include citations in form of ����� ���� �	

��� ��� �	�����	��
����. We also report the number of reports that followed a
particular pattern, but since we did not assess inter-rater
reliability, these are only rough estimates of proportion.

Comments in Fixed Reports
The interactions between REPORTERS and developers in fixed
reports (13% of REPORTER reports) were terse, highly
productive, and largely concerned with repairing behaviors
that both REPORTERS and developers believed were
unintended. This is unsurprising, since as we reported earlier,
the reporting experience of REPORTERS with fixed reports
was significantly higher than other REPORTERS.

Of the 100 in our fixed sample, 43 involved a single
REPORTER problem description, and a small number of status
updates as developers wrote, attached, and reviewed a patch.
In another 23, the REPORTER collaborated with developers to
diagnose the problem by attaching logs, test cases, and screen
shots, and then developers wrote a patch. In another 11, the
REPORTER helped update and manage status flags and mark
duplicates for an existing report. The 13 in which
REPORTERS wrote “me too” comments contained valuable
information that developers asked about and used to diagnose
problems. In one case, a reporter even wrote a 1 line patch
and asked to have it checked in. Only in 9 reports were
REPORTERs’ contributions potentially burdensome: in 6, a
REPORTER proposed an idea that was turned down; in the
remaining 3, REPORTERS asked a question about the bug
resolution process. In general, the interactions in fixed reports
were marked by a high degree of shared understanding about
the process of bug fixing and the constraints on solutions.

Comments in Wontfix Reports
In contrast to fixed reports, most wontfix reports (3% of
REPORTER reports) were requests for some new narrow
expert feature of the form “it would be nice if I could...” Of
the 100 in our sample, 53 were requests that were denied by
developers because they were not broadly useful to “regular”
users. In these cases, developers recommended writing a
plug-in or add-on. In another 9, developers explained to the
reporter how they could achieve the desired behavior with an
existing plug-in or feature, essentially offering technical
support. In one case, a REPORTER even proposed that the
wording of the “about” dialog violated his religious beliefs:

��#�
�� ���	�	����	������������	��� #�� F�G���!��$�������� �����	��HF�!�"���
	�� #�� �!�� I$����� ���� �$����J���!��	�
�� ���	�	��� 	���	 #��� #�� �����
��������	��J�K������I�I���� ��L

In 19 reports, developers explained that the REPORTER’s
request was moot, since they were no longer working on the
software discussed. In 7, developers explained that the
behavior reported was intended and would not change. In the
remaining 12 reports, REPORTERS joined an existing report,
indicating that they also wanted the feature, often offering
design ideas about how it should work and providing use
cases in which it would be useful. When developers replied
to these, they usually identified reasons why the ideas would
not improve user experience or why they were technically
infeasible. Some REPORTERS expressed frustration:

��� M��� ���G � $#����� �#�����!	���� #��� �	����N� ��� ��$� ��� � !��
$#�������	 ���� �!������� #���������MJ�K������I�I���� ��L

���� 	 ���� � �� J�	������G � �� � ����
�� #� � ��$	�	���� �	����N������G �
�� � ����
�� #� ���$	�	��������#�����!	���JJJ�K������I�I$���L

Overall, it seemed that wontfix reports were generally written
by power users with requests for narrow use cases.

� ��
+��
�,�������
�,����-

�����
�����

������ ��	��� �������
��� �������
�

���(��O����� ��� ��� P��%���%���Q P��%���%����Q

���(��O������O��������� ��� ��� P��%���%���Q P��%���%����Q

	�$���	������ �� ��� P��%���%����Q P��%����%����Q

���M��������� �� �� P��%���%��Q P��%���%���Q

Table 3. Attachment types by contributor groups and the
proportion replied to by developers.

CHI 2010: Expertise April 10–15, 2010, Atlanta, GA, USA

1670

Comments in Incomplete, Invalid, Worksforme Reports
In contrast to fixed and wontfix reports, incomplete, invalid,
and worksforme reports (38% of REPORTER reports) were
generally characterized by REPORTERS’ lack of effort or skill
in diagnosing problems before reporting them. Although we
sampled 100 of each of these three resolutions, there was
enough commonality in the nature of REPORTERs’
contributions that we discuss them together (citing
percentages instead of counts).

The most common kind of report (33%) involved a
REPORTER identifying an issue that was already resolved in
the most recent build. Developers’ comments in these reports
were of the form “have you tried the latest nightly build?” In
most cases, the REPORTER did not reply and the developer
closed the report. In a similar pattern (10%), developers
asked the REPORTER if they had tried a particular remedy,
and never received a reply (suggesting that the remedy
worked). In some cases, the REPORTER replied to these
suggestions and apologized for not trying them earlier. In
another common pattern (24%), developers asked the
REPORTER to provide more information to help understand
the problem, but never received a reply. In a few cases,
reporters did reply, but were unable to provide the
information requested because they did not know how to use
the diagnostic tools recommended by the developer.

The above reports, accounting for 67% of the incomplete,
invalid, and worksforme reports we sampled, essentially
constituted technical support. However, in 19% of reports,
REPORTERS described unexpected behaviors that developers
could not diagnose immediately. In these cases, developers
continued to ask for information from REPORTERS before
eventually discovering that the problems were due to exotic
customizations that the reporters had made. Most were
grateful to have their issue resolved:

��� 	� ���#��� #�� �������$����������� �������� ���	�J� #��
� M������� ����
M����R��J��
��M��M���S	���� 	����T���!�"���� #��
� ������� �	
�� M��H�
K������I�I���� ��L

In 6%, the REPORTER identified an unexpected behavior that
was ultimately correct, according to some specification.
Developers usually referred to industry standards such as
CSS, HTML, and JavaScript, explaining that other browsers
did not properly implement the standard. Most of these were
obscure edge cases where it was unclear to the reporter what
the intended behavior was. Some, however, were closed by
design, with developers offering some rationale for why the
behavior was necessary or desirable. In another 5% of the
reports, developers decided that the problem that REPORTERS
identified was actually the fault of different system.

Interestingly, only 2% were deemed spam because they did
report a problem, or cited some web site that did not exist. In
general, most incomplete, invalid, and worksforme reports
appeared to be technical support issues that were misdirected
towards Bugzilla and should have instead been directed to
support.mozilla.org or user forums. On the other hand, the
ambiguity of many of these reports suggests that whether
something is a bug is largely a matter of users’ understanding
of developer intent and responsibility, neither of which
seemed to be commonly understood.

Comments in Duplicate Reports
Duplicate reports (42% of REPORTER reports), exhibited
three basic patterns in our sample: 82 were marked as
duplicate on the same day they were reported, with no
additional comments (other than developer reminders to
search for duplicates before posting). Another 12 involved
some diagnosis about whether the report was a duplicate of
something else, with the reporter often providing logs and
other information to facilitate the diagnosis. The last 6
REPORTER contributions were “me too” comments, none of
which were replied to or contained additional information.

It was possible, however, that the presence of duplicates
alone was helpful. Therefore, across the whole data set we
looked for comments with the word “duplicate” that were not
automatically generated comments about duplicates, finding
44,093 uses in 32,092 reports. Of these, 35% were written
CORE developers, 35% by ACTIVE, 27% by REPORTERS, and
2% by USERS. To inspect these in more detail, we sampled
100 of these comments. Of the 62 that were references to
duplicate reports (and not a reference to some other concept
of duplicate), 60% were developer statements that the report
was a duplicate, 10% were statements that the report was not
a duplicate, 8% were reporters apologizing for the duplicate,
and 6% were developers telling people to stop filing
duplicates. Additionally, 5% were statements about the poor
quality of a report and 3% were reporters indicating that they
could duplicate the problem on a certain platform. 5% were
REPORTERS citing the number of duplicates to advocate for a
change and 3% were ACTIVE developers referring to the
duplicate count as an indicator of “unhappy users.” In other
words, few cases was the presence of duplicates used to
advocate for a particular decision.

Comments in Contentious Reports
Reporter contributions to the reports in the previous sections
seemed primarily to be technical support or spam. Did their
contributions differ in the 5% of contentious reports, that we
defined earlier, other than in having more commenters?

To begin, we classified the titles of the reports in our sample
of 40, to get a sense of what issues were drawing so many
participants. Topics included: bookmarks (12), the location
bar (5), favicons (4), file type handling (4), keyboard
shortcuts (4), installation (4), tabs (2), security (2), history
(2), build configuration (2), and web forms (1). Moreover, 24
of the 40 requested a change in application behavior whereas
the other 16 identified crashes, hangs, incorrect information
or data loss. Clearly, contentious reports were marked by
their relation to the design of major features of Firefox.

In our reading of these reports, REPORTERS and USERS
contributions were many in number, but few in type, and
markedly different than their contributions in routine reports.
For example, reporters wrote “me too” comments, as they did
in some routine reports, but here they read more like pleas,
describing the dire implications of not fixing an issue:

���$	����M� ������ �� �� M�� #���������� K�����	��� #�M� �
���
����
�#� � 	 � �#�����!�L� 	��.�������
�������(��� ����JJJ��#�� �����	S�R����
K������ $#����� �����L� ���� �#	$#� �G�� $���R��� �	 ��� ���� #�� �	�# �$�	$
�
��
�� �N ���	
��M� �����������K	�� ���������M�	�� #�	��!�������L����	��
����� ���� ��#����	��� ���	$J� JJJ� � G�� �� � U$���U�� ��M�J� �	����� 	 � �� J�
K������I��I���� ��L

CHI 2010: Expertise April 10–15, 2010, Atlanta, GA, USA

1671

�� ���
� ��� �� ������ ���� � ���	����� ���� ��� F�� � � ��������� F�
�������� $����MJJJ��#	�� !������ �� ���� ��� !��� 	���	����N�#�������� 	 �
���������'� �
������&��� �	 #� ���� ��	$�R��J� JJJ��
��� ���� ��� #��
��!�	�� ���	
��	��� ��$���� ���#	$#����� ���� # ��JJJ������S	���� �	���	 �
�	���
��M� �	
��M� !�� ���� �� #	�� ��!���J� �#���� 	�� ��� F#�M� �	�����
������JFK������I���I���� ��LJ

Developers responded to these comments by asking reporters
to cease writing “me too” comments:

���#��� #	��!��� �� ��N���� #��!�� � #	���������!�����	��� �������� ��
���
� ��� 	 J��#�� ��N �!�� � #	��� ������ !�� �� � ���	��� ����� V��� ��W�
$����� �� ��� /��$
�/� �#�� �� �� ���&���X� 	 Y�� �� � #� � #���� 	�� ���
V���M��NJW�K������I���I�$R
�LJ

Reporters often took these scoldings personally:

�
��� ������ #����������
�� $���� �� 	������R�������#�������#���
���� � #�� ������3��� ��� � �� ���� � ����� ��� R��� 	����R��� #�� ���������
 #� �$������	 �JJJ��#	$#��� ���� #� � 	���� ���M	��� F��� ��FZ� 0��� ��'�
��
���� ������12�� ��
���
�� ����
���
��� �� ����������J���� M������ M����
����N���M��!��������	��� �� #����$ ��Z�K������I��I����L

To reduce the frequency of “me too” comments, developers
reminded reporters of Bugzilla’s voting mechanism:

�� � ����������M���� ����� !� ������#���� ����� �� $�����������	�������
����	��� #�� !��� �	 #� ����� $����� �� ������ #�� �	���� ��� F	 �
#����� ����FJ�3#��� �� �#�� ������� ��� �#�� (��
�� ���#�
��� 	��
!��S	���J����3��� ������� !��� ����M�!������ ��R����� ���� $����� � ��	 ��
�������M� #���	�� #����	��	������R��� ������JJJ�K������I��I�$R
�L

Many REPORTERS and USERS did not heed these requests,
likely because these were just one comment among hundreds.
Others fashioned their own voting mechanisms out of the
report meta data:

���M� �����	��J� ��������� #�� !��$
	���J������ �������� � �����
� ��
��� � ��J�����	���G�� $�����	��� #� � ��MJ�3��� ��������� �G�� �M� ��T��� 	 �
��M��M�� ���� 	�� 	 � �������� #	��� ������G � ������� ������ �� ������G �
!���������� �����	 J�K������I���I����L

Despite some developers’ statements that “me too”
comments were unhelpful, some ACTIVE developers did use
them as evidence of the severity of a problem:

	� ������ 	 � ������ �� � !�� �� !	�� ����� �� ��
�� #	�� ��$#� ���������
��� ���� K
� ��[$����� �[������ #�����L� �
�	��!��� ���� �N�J��N � ����
�	
��	 ���������\�� ����
������������$��J�K������I��I�$R
�L

�#�� ��$ � #� � #	�� !��� #��� !���� ���� ���� �	N� M������������M� #������

� ���	��	$� ��� #� �	 G���� ���!	��	����J�K������I��I�$R
�L

In no reports in our sample did a CORE developer refer to
comments in this way.

In addition to “me too” comments, USERS and REPORTERS
wrote design rationale for the changes they desired. Most,
however, were unsubstantiated generalizations about users:

������������Y �#�
�� #��
���������� ���� #������� ���$\�	��� 	 ������	��
���	
��M� ���#�� � #	������ 	�� #�� ��� � ��	��� �� ��� ���� #�� �����Y �
����
�N	� �J�K������I��I���� ��L

�#�� �
������������	��� 	������ #���	������ �����������	�� 	 ���	��F	��G���
������������F������ �� #�MG������� ���� #���	����J�K������I��I����L

JJJ� ��� � ������ ���G � $���� �!�� � #�� ���
���
�� ���!��� K����� �
�
��M���� �� ���� #��� 	 � �� M�� ���R��� ��$��� �� �
���	��� #��� ��
����
��	 L�K������I���I����L

These generalizations often offended less technical users:

	� � ���	��� �M� !�#�
	���� ��� �� ����� JJJ� 	�� ����� �M� !�	��� ��$����
��������!M������
	������������!�� ���� #MJ����������� �$ ����M�#�
��
 ���� #�� ������ ���� $����� ����� ������ �����	�� ����� �M	��� �� ����

��$#� � ���M� ����!� ��R� ���F ����� #�� #���F� �����R�����!�� ������
!�#�
	����JJJ�K������I��I���� ��L

In contrast to these statements, CORE arguments were
grounded in design questions and calls for evidence:

����� #�� ����� �N�$ � #�� ��
	$��� ������	��� ������ ��� ��!�� ��� ���
�#��� #���	 ��	$���$#�����Z�K������I�I$���L

�#�� �����\���R��� 	���#� #��� �����������������!�$
�������$����� #��
����� ��������� #�M� ����#��� ��	���� ��$�	$
� #�� �	�# ������	 �������
 �M� #�� ����R������	�J���� 	 � ������� 	 G�� �������J��#�� ��M� ���������
 #	��\���R���	�� #����#������!	�	 M�� ��MJ�K������I���I$���L

3���N��	��� ��� �� #	�
���� �#�������$������� ����� �� �M� #�������
$����� �� !� ���R����� ������ �� ��#� #������ �� � #�MG��� ���
	��� �����
����� ��!������ #�MG��� �� � ��	 �!��� ���� 	�$���	��� 	� �� #�� ��	��	���
����$ J�K������I���I$���L

Unsurprisingly, when USERS and REPORTERS did not see the
change they desired, many were unhappy. Many expressed
disillusionment, while also revealing their lack of
understanding of the complexities of software development:

�	 #�����S	���� ��
����������� ���� �	�� ���N� #	��
	������!������ #�M�
#�
������ ����	�� � #�	�������J�K������I��I���� ��L

�#M� 	�� 	 � ���#���� ���� #�� ����������� �� �� � #	���	�# Z� � �������!��
�	
�����
���	��� #��
��������	�!� ��� ��O�]�J�K������I��I����L

��S	���� F������R��F�� M���#�
�� $��#�� M���#�
�� #�� ������$��J������ ��J��
������� ���3���� ����	� ��� �3��� 	��� U���� ����� ��������
����UJJJ�#	�� 	�� #�� U��3 �U� ��� ���� �	 ��R��� #� � �#���� �#M� ����
����$��U�3���UJ�K������I��I���� ��L

If not ignoring these comments altogether, developers replied
by citing the Bugzilla etiquette page and asking users to be
more respectful. Some developers wrote comments to diffuse
the situation by explaining the intent behind the process:

���� $���� ������
��M���J����� ���M� R���� ��� ��#�
�� �� ��M� 	 Z� � G��
�#� � ��� ��� � �� �M� �� � �� � �� � �	 #J� �#� � 	���� � $���� ���� F��G
��
����� �� ��$	�	��F� ��� FM���� ������� �� ���� ��$
� ���� ��G��� ��	��� ��
	������ #��FJJJ� �#� G�� �#� � #�� ���
� 	�� ���J� �N��	��� �R��J� ���
��� � �����������N��	��� J�K������I���I$���L

Not all users were disrespectful, however, even when the bug
did not go in the way they desired:

�#��
�� ���� #�� $����� � JJJ� �#�� �$#�	$��� �������� ���� �#M�
��$��J�\�	 �� �#�����G �!����$���������� ���
� �#�������� �� �� � $��������
�����������#M�M���������G ���� � ����� #� J�K������I��I���� ��L

And when contentious bugs did get resolved in their favor,
reporters were often quite grateful:

�#��
� M��� �����T��� #	��!�$
���� #��������	� �� #�	�J� JJJ���������	�#�
�	
�� #	������������� ������ #	���� ���$	���M� ���� ��� ������ #� �������
$���	���� ��	 $#	��� !�������J� �������� ��� 	 � �M����� !� � �� ���G �
����
#��� ��$���J�K������I��I���� ��L

In summary, USER and REPORTER contributions to
contentious reports were dominated by misunderstandings:
users did not understand the bug resolution process or the
technical difficulty of devising viable solutions. Users were
also quite egocentric in stating their concerns, many of them
suggesting they were entitled to a prompt fix. Developers’
comments, in contrast, focused largely on trying to explain to
the confluence of commenters what was happening, what
was constraining the design, and why such constraints were
inevitable.

CHI 2010: Expertise April 10–15, 2010, Atlanta, GA, USA

1672

DISCUSSION
Throughout our analyses, one basic trend has emerged: the
majority of REPORTER reports did not lead to changes, did
not appear to contain valuable information, and in most
cases, devolved into technical support or were simply spam.
Those REPORTER reports that did lead to change were largely
reported by a comparatively small group of about 8,000
experienced, frequent REPORTERS before the release of
Firefox 1.0. Moreover, when inexperienced REPORTERS did
contribute reports that led to change, they were open far
longer (a median 6 months longer) than other fixed reports,
raising the question of whether these issues were less critical.

In our discussion, we consider various implications of these
results from testing, HCI, and design perspectives.

The Software Testing Perspective
One of the central claims behind open bug reporting is that
the work of software testing can be delegated to users. This
did hold true, but doing so appeared to entail many costs. For
example, we found that most reporter efforts were at
reporting critical issues of which CORE and ACTIVE
developers were already aware. Moreover, REPORTER
reports that did identify unique issues may have been less
critical (based on the longer period that they were open).
Moreover, the claim that “many eyes make all bugs
shallow” [12] did not hold for Mozilla bug reporting: the
median report had only 2 contributors, most of whom were
CORE and ACTIVE developers. It would be more accurate to
say that many eyes led to a few high quality reports. In some
ways, the roughly 8,000 experienced reporters who reported
fixed bugs do not differ from the 1000’s of beta testers
recruited by closed source companies.

Of course, this perspective ignores the possibility that without
open bug reporting, Mozilla may never have recruited its
thousands of CORE and ACTIVE developers. In fact, a large
amount of work demonstrates that bug reporting is a primary
entry point for newcomers [5,7,8,9]. Perhaps the value of
open bug reporting is more in recruiting, vetting, and
retaining talented developers, and that unwanted content is
the cost of this recruiting. And these costs appear to be
insignificant. Mozilla has handled approximately 270,000
reports from REPORTERS over the past 11 years, which is an
average of 67 REPORTER reports per day, spread across 3,500
ACTIVE and CORE developers. This is only an average of 1
REPORTER report per developer every 50 days. Even though
only 1 in 6 of these ends up being valuable, this is a very
small productivity loss. Moreover, this delegation approach
scales, because for every ten new reporters, there is one
reputable developer to evaluate their contributions and
decide, by merit, whose contributions are of value. In this
sense, open bug reporting is like an extended job interview.

How might these findings translate into closed-source
software development contexts? If the primary benefit of
open reporting is in recruiting developers, it appears that
closed-source companies have little to gain from open
repositories. This is because what appeared to make
experienced reporters effective was their understanding of
what constituted an bug and what was by design. Volunteer
reporters with no knowledge of the intended design are

perhaps more likely to report on issues that were intended. In
essence, an open repository with closed source (which some
projects have adopted, including the Facebook API), would
likely begin to look more like traditional technical support.

The Human-Computer Interaction Perspective

Another party in this discussion are the users themselves.
While users may have received many benefits from
reporting, such as technical support and the rare fix, their
experiences were not altogether positive. When users tried to
be helpful by contributing as much data as they could, they
were called spammers and told to stop. When developers
tried to explain the problem trying to be solved, users
interpreted the technical complexity as excuses for not
implementing a change. What underlies these user
misunderstandings seemed to be a legitimate confusion about
developer intent and responsibility. How were users to know
what behavior the developers intended, other than reading
potentially out of date specifications and project roadmaps?
How were users to know whether a bug was Mozilla’s
responsibility or some other organization’s? Many reporters
only knew that their web site did not work; they did not know
that this was because the web site had a bug, or was designed
for the quirks of Internet Explorer. These misunderstandings
illustrate many kinds of unhelpful culture clash, which only
appeared to annoy developers and embarrass users.

The Design Perspective
The discussions above raise several issues for the design of
open bug reporting tools. For example, one critical question
is whether the openness of Bugzilla was actually helpful. Our
results show that one of the most common problems was that
users did not perform basic diagnostic steps before reporting
a problem, despite a number of support resources such as
dozens of Mozilla user forums and support.mozilla.org. In
these, reporters probably would have resolved their issue
without taking valuable time from developers. Instead of
allowing anyone to report issues, perhaps a better strategy is
to delegate reporting to a trusted group of reporters, and have
them receive issues through support sites first. This would
add a new class of quality assurance gatekeepers (as is
already done in commercial support), while preserving the
ability for new contributors to acquire status and reputation.

Other design issues have more to do with reporting tools and
groupware. For example, our results show that while
duplicates are many in number, the challenge was not
necessarily in detecting duplicates (since most duplicates
were quickly marked so after the duplicate was posted), but
in aggregating the information they contained and making it
clear what was already known. Reporting tools like Bugzilla
should provide ways to organize information provided by
reporters, and incentivize reporters to add it there rather than
as comments. Even something as simple as a wiki at the top
of a report for users to indicate the platforms that exhibit the
issue, the context in which it occurs, and ideas for fixing it,
could go a long way in preventing unhelpful “me too”
comments by making it obvious what has already been said.

Another common problem was that USERS and REPORTERS
simply lacked any knowledge of the Mozilla bug reporting
process and the developers involved in a particular report.

CHI 2010: Expertise April 10–15, 2010, Atlanta, GA, USA

1673

Adding some meta data, and perhaps structure, to reports,
could remedy many of the misunderstandings that these
knowledge gaps led to. For example, all reports move
through a set of states; bug reports should clearly show these
states, to make it clear that developers have moved on to
fixing a problem (and so no more comments that the problem
exist are needed). Providing information about the developers
involved in the report, such as how many other bugs they are
assigned, and a schedule of the upcoming releases toward
which developers are working, would allow reporters to have
more patience and understanding when making requests.

Aside from the problems we observed, there are several
opportunities that our results revealed that could both
broaden participation in open bug reporting tools while
minimizing unwanted content. For example, many of the
wontfix bugs were simply usability problems in specific
situations that the developers viewed as uncommon. If
feedback and feature request mechanisms were built into the
software itself (for example, imagine clicking on a UI control
and typing, “I always accidentally click this”), the Mozilla
community could automatically gather evidence about set of
the situations that users are experiencing frustration. Not only
would this be a great source of usability information, but if a
developer eventually writes a report about the problem or
feature request, there would be data to assess to what extent
the situation occurs, helping to prioritize issues.

Threats to Validity
Our study has a number of limitations that limit its
generalizability. First and foremost is the fact that we only
studied the Mozilla project, which is someone unique in its
corporate origins and user-facing nature. Many open source
projects are aimed at more technically savvy users, and the
quality of reports in these developer-centered projects may
differ. Moreover, Mozilla and its user base is large compared
to other open source software, which may be a central reason
for the results we observed. Also, bug reports are not the only
venue through which users contribute: users may add value
through mailing lists, IRC, and other channels.

In additional to these generalizability concerns, there are a
number of internal validity concerns. Furthermore, the
substantial scripting involved in deriving our results may
have been effected by scripting errors in unpredictable ways.
Our classification of contributors was static, and did not
account for changes in status over time. This may have led
many of the contributors who would have previously been
grouped as CORE to be included in other groups instead.

CONCLUSIONS
In this paper, we investigated to what extent power users
provide valuable contributions in open bug reporting. Our
study found that in the case of Mozilla, they primarily did
not, but what Mozilla gained was a small pool of talented
developers and a number of critical fixes before the release of
Firefox 1.0. While the amount of unwanted content was high,
the cost of filtering these reports was spread over many
developers. Our results suggest many ways that open bug
reporting tools could be improved to reduce unwanted
content and maximize the value that both users and
developers get out of open bug reporting.

ACKNOWLEDGEMENTS
We thank Alex Faaborg of the Mozilla Corporation for his
insights on Mozilla bug resolution.

REFERENCES
1. Barcellini, F., Detienne, F., Burkhardt, J.M., Sack, W.

2008. A socio-cognitive analysis of online design
discussions in an open source software community.
Interacting with Computers, 20:141-165.

2. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj,
R. and Zimmermann, T. (2008). What makes a good bug
report? ACM Foundations of Soft. Engineering,308-318.

3. Cooper, A., Reimann, R. and Cronin, D. 2007. About
face 3: The essentials of interaction design. Wiley Pub.

4. Crowston, K., Annabi, H., Howison, J., and Masango, C.
2004. Effective work practices for software engineering:
free/libre open source software development. Workshop
on Interdisciplinary Software Engineering Research.

5. Ducheneaut, N. 2005. Socialization in an open source
software community: a socio-technical analysis.
Computer Supported Cooperative Work 14(4):323-368.

6. Hendry, D. G. 2008. Public participation in proprietary
software development through user roles and discourse.
Int’l J. of Human-Computer Studies, 66(7): 545-557.

7. Herraiz, I., Robles, G., Amor, J. J., Romera, T., and
González Barahona, J. M. 2006. The processes of
joining in global distributed software projects. Global
Software Development, Shanghai, China, 27-33.

8. Jensen, C. and Scacchi, W. 2007. Role migration and
advancement processes in OSSD projects: a
comparative case study. International Conference on
Software Engineering, 364-374.

9. von Krogh, G., Spaeth, S., and Lakhani, K. R. 2003.
Community, joining, and specialization in open source
software innovation: a case study. Research Policy, 32
(7):1217-1241.

10. Li, Q., Heckman, R., Allen, E., Crowston, K., Eseryel,
U., Howison, J., and Wiggins, A. 2008. Asynchronous
decision-making in distributed teams. Computer
Supported Cooperative Work, 1-2.

11. Mockus, A., Fielding, R. T., and Herbsleb, J. D. 2002.
Two case studies of open source software development:
Apache and Mozilla. ACM Trans. on Software
Engineering and Methodology, 11(3):309-346.

12. Raymond, E. 1999. The Cathedral and the Bazaar.
O'Reilly, Sebastopol.

13. Sandusky, R. J. and Gasser, L. 2005. Negotiation and
the coordination of information and activity in
distributed software problem management. ACM
Conference on Supporting Group Work, 187-196.

14. Singh, V. and Twidale, M. B. 2008. The confusion of
crowds: non-dyadic help interactions. ACM Conference
on Computer Supported Cooperative Work, 699-702.

15. Yamauchi, Y., Yokozawa, M., Shinohara, T., and Ishida,
T. 2000. Collaboration with Lean Media: how open-
source software succeeds. ACM Conference on
Computer Supported Cooperative Work, 329-338.

CHI 2010: Expertise April 10–15, 2010, Atlanta, GA, USA

1674

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /EngraversMT-Bold
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EurostileBold
 /EurostileRegular
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-DemiBold
 /MaiandraGD-Italic
 /MaiandraGD-Regular
 /Mangal-Regular
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSpecialty
 /MT-Extra
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

