
Involving Reflective Users in Design
Paula M. Bach & Michael Twidale

University of Illinois
{pbach, twidale}@uiuc.edu

ABSTRACT
We draw on the idea of the reflective practitioner to
consider how end users can directly contribute to user
experience design discussions in open source projects.
People with expertise in their own use context but without
programming or user experience analysis and design skills
can provide reflections on personal experiences.
Author Keywords
FLOSS, reflective practitioner, user experience
ACM Classification Keywords
H5.2. User Interfaces: User-centered design
General Terms
Human Factors

INTRODUCTION
Free/Libre Open Source Software (FLOSS) projects can
have usability problems, particularly for people with less
technical skill than developers [6]. Consequently a number
of projects have tried to involve people with user
experience (UX) skills. However, for various reasons, UX
designers are relatively scarce in FLOSS projects.
HCI research has over many years shown the importance of
involving users in the development of successful
applications. Could involving more end users help with this
scarcity? In this paper we argue for the possibility of
involving people in the usability process even when they
lack formal UX analysis and design expertise. To do so, we
make an analogy with the FLOSS code development
process. Although the most valued contribution is code, the
submission of suitably formed bug reports is very useful.
Similarly end users might contribute their personal user
experiences, including personal usability bug or confusion
reports, which could be aggregated and used to inform
design.
The challenge is to consider how people with fewer
technical development skills can make a useful contribution
without major commitments of effort, learning and
enculturation. We suggest the model of Schön's reflective
practitioner as a way to solicit and frame useful personal
usability experiences.

RELATED WORK
Schön characterizes the expertise of practitioners by their
propensity and ability to reflect on what they do, while they
are doing it. When everyday practice results in the
expected, a practitioner goes about her business, but when
something surprises her, she “attends to the peculiarities of
the situation at hand” [7]. In situations of surprise, whether
good, bad, or indifferent, reflective practitioners engage in a
process of framing, hypothesizing, and understanding.
Reflective practitioners frame a problem through a process
called problem setting. Setting a problem involves finding a
context and a name for the things surrounding the problem.
The practitioner tests a framed problem and experiments on
the frame to see if it holds. Schön calls this testing
hypothesizing. The practitioner tries to understand the
situation through hypothesizing and continuously tests and
reframes the problem to discover the ensuing consequences
and implications.
Fischer, in a number of papers (e.g. [2]) has advocated for
meta-design to enable end users to be more directly
involved in software development. As he notes: “design
materials and the externalized representations are essential
to design as a reflective conversation”. This creates a need
to explicitly provide resources and interfaces that can act as
effective externalized representations and support reflective
conversations. In the case of distributed software
development settings such as FLOSS, these conversations
are not just those that Schön notes between the practitioner
and the materials, but also between the practitioner and the
community of other practitioners and the larger software
development community. In the case of extreme
programming, pair programming strongly encourages
reflective practice. It may be that the externalizations
necessary for distributed software development afford
certain kinds of reflection [3].
Sengers et al. [8] explore the larger issue of reflective
design. Although they concentrate on the importance of
designers reflecting on their own design activity, they note
the importance of involving users, including giving them
license to participate, and designing to inspire rich feedback
from users, including users’ reflection.
In a study of del.icio.us, Hendry [5] found that users discuss
features in several ways including feature requests without
justification and justified by appeals to personal experience,
observed use, and use scenarios. He notes that the
discussions reflected much creative work and “sustained
reflective conversation” supported and facilitated by the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

CHI 2010: Remember and Reflect April 10–15, 2010, Atlanta, GA, USA

2037

leader of del.icio.us. Hendry contrasted the ordinary way
with which the community sustained reflective
conversations to the proposals for systems to be carefully
designed to support creative and reflective processes.

THE STUDY
Is there any evidence that there are already reflective user
behaviors in a FLOSS project? If so, studying them might
gain insights into broadening this kind of participation. We
chose to consider UX discussions within OpenOffice.org
(OOo) - a productivity suite of applications intended for use
by a broad range of end users. OOo is organized into a
number of projects, one of which, the UX project, launched
in January 2007. The UX project has a wiki page with clear
entry points for users interested in contributing. The open
invitation for UX contributions from users results in
contributions from user/developers who write code, UX
designers paid by Sun Microsystems who comment and
engage in design activities, active users who ask questions
and comment on the ongoing discussions [4] and, the focus
of our investigation, reflective users. The openness of the
OOo UX project, and its rich mailing list design discussions
including design proposals submitted by users make it a
good place to study current reflective users.
Users have the option to register as a member of the UX
project. As of mid-Sept. 2009, membership totals 335.
Registered members can choose to provide information
about themselves, and 59 have chosen to do so. The list has
nine Sun employees: seven UX engineers, including the UX
project lead plus an OOo product manager. Twelve
members self-identify as a user, of which only seven
actually posted anything. We chose to study in-depth self-
identified users who were also active posters (in the top ten)
in either of two relevant mailing lists. This yielded 4
people. Frequent posters are involved in discussions in
which reflections are likely to emerge. As such, we are
focusing on people who are more likely to be skilled at
reflection as a means to understand how to encourage more
of the productive behaviors identified. We added one more
very active poster who did not self-identify as a user, and
did not appear to be a UX practitioner, or affiliated with the
Sun UX team.

RESULTS AND ANALYSIS OF THE REFLECTIVE USER
The discussions on the mailing lists and related artifacts
generated from these five users illustrate three key
characteristics of Schön’s description of a reflective
practitioner: framing problems, hypothesizing, and
understanding.
Reflection depends on actively engaging in problem solving
and the distributed, collaborative nature of solving
problems in open source mailing lists necessitates a cycle of
reflective activities. We found examples where reflective
users reframed a design problem through prototyping;
hypothesized about use; and constructed understandings of
use through discussion with other members on the OOo UX
project mailing lists.

Having had an established a priori framework, we extracted
key concepts from the reflective practitioner framework.
With the five users we identified, we read through their
posts and tagged examples of framing, hypothesizing, and
understanding. We made two passes through the
discussions comparing the effectiveness of our tagging and
present some of the tagged examples here. Overall from the
five users we identified 14 instances of hypothesizing, 26
instances of framing and 11 instances of understanding.
This initial example below begins with a pleasant surprise
that launches reflections about use and the testing of a
reframed problem. A first user posted mockups that showed
a solution for quick navigation between open windows. A
second user responded positively to the mockups (shown
below), pondered a consequence and then with the mockup
open conducted a test of the idea. This element of surprise
starts the cycle of reflection.
Very nice! […]

Side note: expect some performance hit on computers that aren't
suitably specified. […]

Incidentally, as I'm now typing to the left, with [user's] illustration to the
right, I repeatedly imagine that the preview is rotated a little, in
harmony with the 'fan' from which it springs. In fact, it's upright, but I
can't shake the imagined rotation from my mind's eye.

Would it be a good or bad thing for fanned previews to match the angles
within the fan? Instinct tells me that legibility is *lost* if previews are
rotated in any way.

Like reflective practitioners, reflective users take on a
particular framing role. This includes setting up a particular
knowledge system, structuring particular problems,
employing strategies, theorizing in different ways, and
owning particular facts [7]. In the example below, the
discussion surrounds a proposal about whether or not to
include a ruler show/hide button in the OOo word
processing application, Writer. One user has posted on the
mailing list a detailed rationale for including a show/hide
button for rulers. Another user responds (shown below) by
reframing the problem (1) and presenting a mockup for a
solution to the reframed problem (2). The user then
hypothesizes about the benefits for the users of OOo in
general, and asks for comments (3).

1

I don't really see why we need the rulers hidden by default. That
other office suites prefer that behavior doesn't really matter, and
that it wastes screen estate under small resolutions could be fixed
by hiding the rulers by default with small window sizes only.
Actually, what I would suggest is to go the opposite way and
improve the rulers so that people DO use them more often.

2
Here's an OOo mockup I did a while ago:

http://[removed for anonymity].

3

The rulers would now surround the page (so it is easier to
determine where on the page something would be/is), and a "+"
button would replace the current "tab-type chooser," offering the
user the options to add columns and sections as well tabs. This
could make the creation of tabs, columns, and sections more
intuitive, faster, and easier. What do you think?

Schön describes hypothesis testing as consisting of “moves
that change the phenomena to make the hypothesis fit...The

CHI 2010: Remember and Reflect April 10–15, 2010, Atlanta, GA, USA

2038

practitioner makes his hypothesis come true. He acts as
though his hypothesis were in the imperative mood. He
says, in effect, "Let it be the case that X..." and shapes the
situation so that X becomes true” [7]. Reflective users
hypothesize as a way to begin exploring how to reframe a
problem and postulate how the reframing might affect both
their use and also making generalities about the OOo user
community. This hypothesizing involves making a
commitment to change the behavior of the software and
then using imperative language to state, in the form of a
hypothesis, what such a move would entail for use.
The reflective user who posted the reflection below
hypothesized about an issue that was submitted to the bug
tracker. The issue refers to how the save icon behaves in the
OOo applications and that the behavior should be changed.
Currently the icon is grayed-out until a change to the
document is made. The user who submitted the issue
proposes to change this so that OOo users can save
whenever they want, even if no changes have been made to
the document since the last save. In the example below the
reflective user hypothesizes several use scenarios that might
occur should the behavior change.
Consider a corporate environment. […]

What does happen when an unnecessary save operation is executed?
Well, surely all concurrent users are affected. Even a perfect
implementation (and I have serious doubts that the implementation will
work perfectly under every scenario) of this process will generate
trouble for the other users: will they need to validate again all the
changes they just made, because someone on the other end of the line
choose to save the document? What is the error rate during this
operation?

And please remember that - because of the nature of this process - a lot
of clashes are likely and a lot of hidden errors will be lurking around.

Documents might be huge (e.g. spreadsheets - especially when the
current size limits are lifted), and saving might take time, blocking the
user from productive work.

What if the document is saved over the network. Not all networks are
Gigabit networks. It might slow the whole network.

Distress to users: users will tend to hit the save button every few
minutes. By stealing their attention, the users are more likely to commit
various errors. Don't underestimate this, as it is my experience that users
will focus more and more on saving the document. Guides to show the
current state of the document usually have failed, because users need to
interpret an additional information, so they just tend to push the "Save"-
button.

Changes to a document are sometimes necessary to record. Every
change needs to be documented in the field I am working. It must be
absolutely traceable. This is not corporation policy, this is European
law.

So, there are fields, where unnecessary "Saves" just complicate
something that is already complex.

Although the hypothesizing is not in the form presented by
Schön, the four scenarios above reframe the problem
originally proposed by another user, with each showing a
negative consequence.
The last example shows a clear meta-cognitive process of
reflection. The user refers to previous thinking activity
shared with the community and to other thinking as a
“usability analysis” and demonstrates such thinking so that

other users can also engage in reflective activities that are
helpful for improving the user experience of OOo.
After more thorough thinking, I decided to revisit my writing. I will add
sensible comments later on, but wish now to address some general
issues using an analytic approach. I hope that this strategy will also help
newcomers to perform better usability-analysis in the future.

The usability analysis serves as a template for shared
reflective thinking. In the same example (but not shown
here), the reflective user asks questions of a proposed
feature or change. Such reflective questions include asking
oneself the purpose of the proposed change or feature,
whether users can accomplish tasks quickly, and alternative
ways to approach the task. Each reflection includes a
discussion about possible outcomes and experience drawn
from one’s own use. Although not quite as sophisticated as
the examples from this one reflective user, other users on
the list have adopted this reflective user’s style of reflection
including one of the five we identified to study in-depth.
In reflecting about use, even when derived from their own
experience, reflective users, oddly, don’t talk about their
own errors, yet they will talk about how the general user
population might make errors. We found this surprising,
given that we expected that it would be easier to describe
personal experiences, encountered problems with an
application, problems with competing applications,
personally desired functionality or usability improvements
etc., than it is to consider the needs and possible problems
of others (precisely the difficulty expert developers have
with respect to more naïve end users). Personally desired
functionality is indeed discussed (and justified with
personal use scenarios). The lack of discussion of personal
use-problems may be due to situations where use is tacit
and users’ analytic capabilities default to paying close
attention to the software’s behavior and not their own
cognitive errors. As noted, we are not looking at UX
experts who are sensitized to diagnosing the cognitive
origins of usability problems. It may also be a matter of
norms – that usability discussions are seen as about
designing for others and that personal confusion anecdotes
are not seen as legitimate.
Reflecting about use is also demonstrated by the origin of
surprise or the situation that stimulates reflection. Such a
situation appears not to be stimulated by user errors
experienced by the users, but rather by how they expect the
software to behave. This is akin to the open source concept
of scratching an itch; that developers are motivated by
something about the software that irritates them which
motivates them to fix it. Sometimes the itch is a
functionality absence that they scratch by building the
software and sharing it with others. In the same way, an itch
stimulates a reflective user to scratch by reflecting on why a
problem occurred and what to do about it. Their result is to
reflect in the open and work on coming up with a solution
for the entire community even though they cannot
implement the fix.

CHI 2010: Remember and Reflect April 10–15, 2010, Atlanta, GA, USA

2039

The collaborative nature of the reflective practice in the
open we observed is related to Fischer’s call to move from
reflective practitioners to reflective communities [2].
However what we found is not simply a sharing of the
results of reflective practices by people with diverse
expertise in order to create a collective understanding of a
complex issue from multiple perspectives. It is also a social
approach to helping an individual to reflect on her own
unique experience.

EXTENDING THE IDEA
The findings reported here are on reflective activities
undertaken by existing participants in a FLOSS project. The
study is small in scope and studying other FLOSS projects
to understand what generalizes would help. In some ways it
is deliberately unrepresentative. We chose a project with a
substantial commitment to discussing and implementing
usability and involving several UX experts. Many FLOSS
projects have just one or no UX experts [1]. Nevertheless
these preliminary findings show the potential of involving
reflective uses in UX discussions. As the examples show,
although reflections might exploit specialist expertise about
software functionality or usability, they can still be useful
even when using more common-sense reasoning, or just
describing a personal experience engaging with the
software. We think this is encouraging as a springboard for
widening participation of similar ‘reflective–user reports’
For example, FLOSS projects have effective
functionality/failure bug reporting, yet a project could
encourage usability bug reporting. This might be an
analytic report such as that done by a usability practitioner,
or a student taking an HCI class. But it could be a simpler
matter of 'surprise reporting', where the users reflect on
their experience using the software and describe what they
wanted to do (and why), what they tried doing with the
software (and why), any diagnoses, remediation, or
workarounds they tried and attempts to articulate
contributory causes of their surprise, whether derived from
confusion or not. In our study we did not find examples of
such basic confusion reporting. By contrast these more
committed individuals seemed to provide more
sophisticated reflections that are closely related to desired
functionality.
We think this idea has potential. To work it will need
careful sociotechnical systems design: appropriate tools and
norms for reporting confusions and reflections, ways to
collect and aggregate reports so that they can be acted upon,
very low-cost, low-effort ways to get involved initially,
guidelines and mentoring for reflective users to improve
and get more involved, etc. The study revealed examples of
collective support for reflective practice, mentoring and
modeling of best practice.
Reflective user reports will need to be well understood to be
useful and usable. They are a form of data push rather than
the more familiar data pull. In traditional user studies,
social scientists carefully sample and study aspects of the
use context allowing valid and systematic analysis. By

contrast, reflective users will be a self-selecting group, of
variable quality and reliability and likely to overlook certain
issues and bias emphasis on others. However we have at
least the inspiration from FLOSS code contributions and
bug reports and other settings such as Wikipedia that
widening participation can still be highly effective - so long
as appropriate quality control and mentoring mechanisms
exist.

CONCLUSION
We see explicit support for reflection on use experiences by
end users of FLOSS products (or indeed potential adopters)
as a way to further open up FLOSS participation. We can
gain insights on how this may happen from reflective
practices observed by existing FLOSS participants. The
reflective practices observed and the wider activities
envisioned are not a personal, private improvement of
professional practice. They are a public sharing of those
practices as a way to provide user centered input into the
software development process, particularly of users’
experiences of engaging with the software and of trying to
adopt, adapt, appropriate or integrate it into their lives. Not
only is the sharing of these reflections by definition social,
but the elaboration of the reflections can also be social,
supporting the learning of the practice of reflective practice.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation
under Grant #0937060 to the Computing Research
Association for the CI Fellows.

REFERENCES
1. Bach, P. M., DeLine, R. and Carroll, J. M. Designers

Wanted: Participation and the User Experience in Open
Source Software Development. In Proceedings of the CHI
09 (Boston, MA USA, 2009). ACM.

2. Fischer, G. From reflective practitioners to reflective
communities. In Proceedings of the HCI Int. Conf. (HCII),
(2005).

3. Hazzan, O. and Tomayko, J. The reflective practitioner
perspective in eXtreme Programming, Proceedings of the
XP Agile Universe (2003), 51-61.

4. Hedberg, H. and Iivari, N. Integrating HCI Specialists into
Open Source Software Development Projects. In the 5th
Int. Conf. on Open Source Systems, (2009), 251-263

5. Hendry, D.G. Public participation in proprietary software
development through user roles and discourse. Int. J. Hum.-
Comput. Stud. 66, 7 (Jul.), (2008), 545-557.

6. Nichols, D. M. and Twidale, M. B. The Usability of Open
Source Software 2003 Accessed from
http://firstmonday.org/issues/issue8_1/nichols/index.html
on Jan. 15, 2006.

7. Schön, D. The Reflective Practitioner: How Professionals
Think in Action. Basic Books (1983).

8. Sengers, P., Boehner, K., David, S. and Kaye, J. Reflective
design, Proc. 4th Decennial Conference on Critical
Computing, 49-58, (2005).

CHI 2010: Remember and Reflect April 10–15, 2010, Atlanta, GA, USA

2040

