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ABSTRACT 
Color is commonly used to represent categories and values 
in many computer applications, but differentiating these 
colors can be difficult in many situations (e.g., for users 
with color vision deficiency (CVD), or in bright light). 
Current solutions to this problem can adapt colors based on 
standard simulations of CVD, but these models cover only a 
fraction of the ways in which color perception can vary. To 
improve the specificity and accuracy of these approaches, 
we have developed the first ever individualized model of 
color differentiation (ICD). The model is based on a short 
calibration performed by a particular user for a particular 
display, and so automatically covers all aspects of the user’s 
ability to see and differentiate colors in an environment. In 
this paper we introduce the new model and the manner in 
which differentiability limits are predicted. We gathered 
empirical data from 16 users to assess the model’s accuracy 
and robustness. We found that the model is highly effective 
at capturing individual differentiation abilities, works for 
users with and without CVD, can be tuned to balance 
accuracy and color availability, and can serve as the basis 
for improved color adaptation schemes. 
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INTRODUCTION 
The use of color is ubiquitous in modern interfaces and 
graphical displays. Colors are used to represent a wide 
variety of meanings including data categories, highlights, 
continuums, and specific values [24]. Although color is a 

valuable tool in representation and visualization, many 
users in many different situations have difficulty 
differentiating the colors used on screen. Users with color 
vision deficiency (CVD, often referred to as color-
blindness) are the best known subgroup – and for these 
users color differentiation can pose extreme challenges – 
but there are many other reasons for differentiation 
problems, such as fatigue, glare, lighting conditions, 
monitor problems, or incorrect display calibration.  

Difficulty or inability to differentiate between two colors 
can have substantial consequences. The problems can range 
from annoyance and frustration (e.g., if the ‘link visited’ 
color in a web browser is indistinguishable from the normal 
link color), to severe issues of error or safety (e.g., 
matching colors between a bar chart and its legend, or 
recognizing an alert color against a background). Although 
most interface-design guidelines state that redundant 
encodings should be used in addition to color, there are 
many examples from information visualization and 
graphical interface design where this principle is not 
followed (see Figure 1). Since up to ten percent of the 
world’s population has CVD to some degree [20], 
addressing the problem of color differentiation could 
dramatically improve usability for a wide variety of users. 

Most existing solutions to the problem involve re-coloring 
– changing some or all of the colors in a visualization to 
colors that can be differentiated by the user. The main steps 
in this process are to transform the original display using a 
model that simulates the user’s color perception, then 
identify regions that are differentiable in the original but not 
in the transformed version, and re-color these regions so 
that they are differentiable, using the model to select 
appropriate colors [23]. The core of this process is the 
model of the user’s color perception. The most frequently 
used model in re-coloring solutions simulates only certain 
forms of CVD [4]. If the user’s color vision is well 
described by this model, then existing re-coloring 
approaches can work well. However, in many cases the 
standard approach is too broad.  

In particular, the standard model does not build a profile 
that is specific to the user, meaning that several factors are 
not taken into consideration, such as variations in the user's 
color perception, non-typical kinds of CVD (of which there 
are many [1]), or environmental factors such as lighting, 
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monitor settings, or fatigue. By failing to take these issues 
into account, the current approach does not adequately 
solve the problem of color differentiation for many users 
and many environmental situations. 

To address this limitation, we have developed a technique 
called individual color differentiation (ICD) modeling that 
builds a much more specific model of the user and their 
environment. The new approach models the user's color-
differentiation abilities by testing the user on a series of 
differentiation tasks, and then uses these results as 
parameters for the model. There are three main advantages 
of the new approach: 
• It does not require any knowledge about the user's color 

vision, since parameters for the model come from 
empirical tests (i.e., calibration); 

• It is not limited by a fixed number of predefined profiles, 
since it builds a model that is individualized to the 
specific user; this means that it can handle all types of 
color vision deficiencies; 

• It handles environmental effects in addition to factors that 
are internal to the user's color perception; therefore, it can 
be used to deal with situations such as glare, lighting, and 
fatigue, that are not handled by any previous model. 

In this paper, we introduce individualized color-
differentiation modeling, describe how ICD can be used to 
improve the process of re-coloring information displays, 
and report on our evaluation of the approach’s efficacy and 
robustness. ICD is the first model to provide a specialized 
empirical representation of a user’s differentiation abilities, 
and shows great potential for improving the usability of 
systems that depend on color to convey meaning.  

BACKGROUND AND RELATED WORK 
There are four main areas underlying our research: the use 
of color in information presentation, factors that affect color 
perception, color-adaptation systems, and existing models 
of color differentiation. 

Color Use in Information Display and Visualization 
Color plays a major role in the presentation of visual 
information, both in everyday graphical interfaces and in 
specific visualization applications. There are many ways 
that color is employed, but three main uses that involve 
color differentiation are encoding categories, encoding 
continuous variables, and highlighting specific items [21]. 

Categorical encoding 
Visual processing in the human visual system allows rapid 
identification of colors [24]. Labeling objects with color 
thus can allow categorical information to be identified 
quickly and efficiently. In categorical encoding, a unique 
color is assigned to each category of data, and all 
representations of this category in the visualization will 
then employ this color as an identifying characteristic. 
Color as category is used in a number of information 
displays (Figure 1), including charts in spreadsheets, ‘link 
taken’ encodings in web browsers, syntax coloring in text 
editors, and tagged messages in email clients. 

Healy [6] suggests that a maximum of seven category 
colors can be used if the luminance of the colors is held 
constant; with variations in luminance allowed, the number 
of unique categories is likely to increase. Figure 1a contains 
an example with twenty categories, which exceeds these 
maximum category numbers. 

Popout, Brushing, and Highlighting 
A special case of categorical encoding involves temporary 
changes to the color of objects that are considered special 
(Figure 1b). Color popout is a visual phenomenon in which 
color makes elements stand out in an obvious fashion from 
the rest of the data. The popout color must be sufficiently 
different from other colors in the visualization for the effect 
to work: generally a saturated, bright, primary color is used 
to replace the established element color. Due to the 
preattentive nature of color, popout allows rapid 
identification and location of important items.  

Brushing is the interactive application of a popout color to a 
visualization with numerous data points. The user of a 
visualization marks elements of interest so they remain 
easily discernible while the data is manipulated (e.g., 
rotated in a 3D scatterplot).  

Highlighting is the use of color to bring attention to an 
element or region of a visualization. Unlike popout, 
highlighting does not replace the element color in the 
visualization, but surrounds the element of interest. As a 
result, desaturated colors are often used to prevent the 
highlight from occluding the highlighted item.  

Encoding continuous variables 
Color is also often used as a means to encode univariate or 
multivariate data. This process involves the discretization of 
a continuous data set, where each of the discrete ranges is 

 

Figure 1. Examples of colour use for information display: categorical encoding, brushing, and false colour. 
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associated with a given color, and the data set is painted 
accordingly. For example, the depth of a body of water can 
be encoded using shades of blue, where darker blues 
indicate deep water and lighter blues show shallow water. 
This approach is used in several techniques: false color 
representations (mapping to hue, as in Figure 1c), 
continuums (mapping to luminance and saturation), and 
multidimensional data display (color as dimension). 

Mapping an ordinal set of data to a color representation 
requires the invention of a hue scale. This scale must be 
learned before the visualization can be used, which can 
reduce usability [20,24]. Another difficulty with hue scales 
is simultaneous contrast, which occurs when the perception 
of a color is influenced by surrounding colors. 

Factors that Influence Digital Color Perception 
Perception of color is a complex process depending on 
many factors external and internal to the body. Color is 
perceived as a distribution of light that enters the eye, and 
so anything that influences this distribution of light affects 
color perception. In digital environments, the light source 
will generally be a monitor; these can vary in their output 
level of light, as well as the quality of color produced [20]. 

Once light enters the eye, it is received by the retina and 
converted to neurological signals, which are sent to the 
visual centers of the brain for further processing. Color 
perception can be significantly influenced during this 
process [1]. For example, old age brings ailments such as 
yellowing of the lens and cataracts, both of which modify 
the light entering the eye; in bright lighting, the pupil can 
also severely restrict the amount of light entering the eye. 

Three types of cones generally exist in the retina. Each cone 
type is sensitive to reception of different parts of the visible 
spectrum. This absorption is generally centered around a 
specific frequency for each cone type. CVD results when 
this frequency is different for certain cones (anomalous 
trichromacy), or when entire types of cones are missing 
(dichromacy). In rare circumstances, individuals can be 
missing two or three types of cones, limiting color 
perception to shades of grey [5]. 

Retinopathy occurs when a portion or all of the 
photoreceptors of the retina die, resulting from diabetes or 
long-term exposure to styrene. When photoreceptors die, 
color perception can be drastically altered, reducing blue 
sensitivity, or resulting in total loss of vision. Some 
prescription drugs (e.g., Viagra or antidepressants) can also 
temporarily influence color perception. 

Neurological conditions can also influence color vision. As 
the processing of visual signals flows through a complex 
procession of cognitive centers, problems along this 
procession can affect color perception. The presence of 
depression has been shown to cause the visual field of the 
afflicted to be shifted to the blue [7]. Brain damage 
(resulting from stroke or exposure to solvents, for example) 
can also influence color perception [14]. 

Color-Adaptation Systems 
The idea of adapting colors on a computer display to match 
the color perception abilities of the user can be linked back 
to Meyer and Greenberg’s work [15], which proposed an 
early CVD simulation strategy, a computerized color vision 
test, and the LMS color space. SmartColor [23] is a more 
recent approach that allows the designer of a visualization 
to specify color properties for the visualization. These 
properties then serve as constraints for coloring the 
visualization in a fashion considerate of CVD. 

Many systems have been presented that deal specifically 
with images (e.g., [8,9,10]). Methods developed for 
transforming color images to greyscale have been modified 
to provide accommodation systems for individuals with 
CVD [16,18], and an accommodation system with an 
interactive recoloring algorithm has been developed 
[12,13]. This interactive system was proposed in part to 
allow the user to explore possible recoloring strategies to 
find an optimal approach. Some forms of CVD such as 
anomalous trichromatism are less severe than dichromatism 
and an interactive system can allow these individuals to 
guide the recoloring process. Other systems to assist 
anomalous trichromats have also been developed [19,25]. 

Although this ‘user guided’ approach aids the system in 
selecting the appropriate model to use, it does not achieve 
the degree of specificity that is part of the ICD model. 

Models of Color Perception and Differentiation 
Current models of color differentiation are based on an 
algorithm first presented in 1988 [15] and later updated 
[22,4]. This algorithm allows the simulation of dichromatic 
color perception for individuals without CVD. This is 
achieved with the following steps: 
1. RGB LMS: Using a pre-defined orthogonal 

transformation, translate the original image pixel colors 
(encoded in RGB) into a color representation that 
encodes color as stimulation levels for the three types 
of cones (long, medium, short or LMS). 

2. LMS LMS*: Manipulate the LMS representation by 
removing the appropriate wavelength information for 
the desired type of dichromatic simulation (e.g., long-
wavelength for protanopes). 

3. LMS* RGB*: Using the inverse of the orthogonal 
transformation of Step 1, translate the modified LMS 
colors back to the original color representation. 

To use this simulation algorithm for detecting confused 
colors, an additional step is required: 
4. Compare regions of color in the modified image with 

the original image. If regions that are different colors in 
the original image are the same color in the simulated 
image, then these colors are considered not 
differentiable (confused). 

This approach requires many pieces of information to 
succeed. The orthogonal transformation requires that the 
phosphor light emission spectra for the monitor are known. 
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This varies from monitor to monitor, and particularly 
between monitor technology such as CRT, LCD, and LED. 
The monitor also needs to be calibrated both in terms of 
white balance and gamma. The calibration should result in 
the pure white of the monitor (255,255,255) being a 
chromatically pure white, and the intensity of each channel 
responding in a purely linear manner to input voltage. The 
orthogonal transformation also assumes a ‘representative’ 
human color vision system, but variations between humans 
(polymorphism) is well documented [16]. There are also a 
myriad of additional factors that influence the color 
perception of individuals (as described above) such as age, 
ambient lighting conditions, and the presence of retinal or 
neurological damage [1,7,14]. 

The manipulation step requires full knowledge of the type 
of CVD to be simulated. It does not handle variation in the 
severity of CVD as in anomalous trichromats, nor does it 
handle other forms of CVD such as extreme anomalous 
trichromacy [2], or monochromacy. The manipulation also 
assumes that the gamut of dichromatic color vision is a 
proper subset of ‘normal’ trichromatic color vision. To add 
to this, the algorithm cannot handle the entire RGB gamut, 
in that the manipulation step occasionally results in some of 
the RGB colors produced in step 4 being outside of the 
possible gamut of RGB colors. Lastly, the verification of 
this system relies on reports of unilateral dichromats, which 
are of uncertain quality, and the qualitative feedback of 
only two participants (one protanope and one deuteranope). 

This system works well to approximate a simulation of 
dichromacy for trichromats, but falls short of being a broad, 
reliable, and complete means of simulating CVD for the 
purposes of adaptation. 

SPECIALIZED MODELS OF COLOR DIFFERENTIATION 
Current simulations of color perception are limited in 
several ways. Our primary goal in this research is a more 
accurate model of a user’s color perception – in particular, a 
more accurate model of their ability to differentiate colors 
on a computer display. Secondary goals are that the model 
should be easy and cheap to obtain, and should be 
compatible with existing approaches for color adaptation. 

The main drawback of current approaches is that they are 
not specific enough – either to the user’s particular color 
abilities or to the environmental factors that affect 
perception. Our approach has two differences: first, it 
models each user’s differentiation capabilities individually; 
second, it uses empirical evidence to build the model. 

Empirical models provide a substantial advantage for 
improving specificity, since they are automatically 
responsive to all of the factors in the environment that 
affect color perception, both internal and external to the 
user. For example, if a user has an atypical type of CVD, 
and is also using a monitor that is poorly calibrated, 
traditional simulation models will not fit well; however, an 

empirical model built from that user and that monitor will 
automatically include these factors.  

Empirical models gather their evidence through 
performance or judgment tests that determine what a person 
can see, rather than a mathematical or procedural 
simulation of CVD. In the empirical approach, two 
important questions are how to obtain information to build 
the model, and what the model will predict. 

What information will build the model? 
The model’s general technique will be to test the user’s 
color differentiation capabilities at different parts of the 
RGB color space, and use these empirical values as the 
basis for the model. By “the user’s color differentiation 
capabilities,” we mean the smallest change between two 
colors, both visible on screen, that the user can reliably 
identify as different. This amount is called the Just 
Noticeable Difference (JND) [3]. 

The most accurate model possible would test the user’s 
ability with each possible color combination, but sampling 
must be used to reduce the amount of testing – that is, we 
will test fewer points in the color space, and interpolate 
between these points when needed. There are many 
possible interpolation functions, but based on previous 
research into perception of sensory stimuli (e.g., [3]), we 
assume a linear interpolation between samples. 

What will the model predict? Differentiation limits 
There are two main possibilities for a predictor: first, a 
decision-based system that takes two colors as input and 
returns a prediction about whether or not those colors will 
be differentiable; second, a limit-based system that takes a 
single color as input, and returns a set of predicted limits 
that specify the set of colors that can be differentiated from 
the input color. The second approach is more general, and is 
the route taken for our model.  

There will be six differentiation limits for any color, two for 
each of the three color channels (R, G, and B). The two 
limits are the upper limit (the value above the input color 
indicating the limit of what can be differentiated on that 
channel), and the lower limit (the value below the input 
color marking the limit of differentiability).  

For any color in the RGB color cube, these six limits define 
a box within the cube that contains all colors that cannot be 
differentiated from the input color. As a simple example, 
consider the process for a single channel (e.g., Red). For a 
given red value (e.g., 128), the upper limit for a user 
determines the minimum red value above 128 that the user 
can differentiate from 128; the lower limit is similar for 
values below 128. If the upper limit is 22 and the lower 
limit is 18, the range of non-differentiable reds (analogous 
to the box described above) is the range 110-150.  

The range (or box) of non-differentiability can then be used 
to determine whether colors in a display are safe to use: in 
the above example, if two red values of 128 and 139 were 
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used in a display, the model could state that these would not 
be differentiable to the user.  

Example of the interpolation model 
As stated above, we will use sampling to reduce the 
calibration required for the model. As a simple example of 
how interpolation will be used, consider the case of a single 
channel as introduced above. A model of the user’s 
differentiation ability will be built by testing the user at 
different points on this channel, and then linearly 
interpolating between these known points. 

The simplest model would be built from two samples, such 
as the two endpoints: that is, we test the user’s upper 
differentiability limit when R=0, and their lower limit when 
R=255, and then use these to interpolate all other limits. 
Assume that these limits are determined to be 10 and 35. 
These can be used to determine two pairs of limits, one 
upper and one lower, as shown in Figure 2. As an upper 
limit cannot be measured for R=255 (ceiling), and a lower 
limit cannot be measured for R=0 (floor), the lines for the 
limits do not cover the entire scale, but can be extrapolated. 

 
Figure 2. Linear interpolation in a 1-channel 2-sample model. 

Dealing with channel dependence 
The simple one-channel example described above does not 
take into account the possible influence of other channels in 
differentiability. That is, differentiability with R=0 may be 
different when G=50 and B=50 than it will be when G=200 
and B=200. Therefore, additional samples will be needed 
for the R channel to account for the influence of different G 
and B values. We again use linear interpolation to predict 
for colors in between our input samples. 

The example model from above now requires the user’s 
differentiation ability for the R channel with four 
combinations of G and B: 0,0; 0,255; 255,0; 255,255. This 
means that there are eight samples for each channel in a 2-
sample model of RGB color. 

Full model example 
Using these eight points for calibration, we can extend this 
simple model to a full model. To begin, differentiability 
limits for each channel must be collected at these eight 
points giving 24 calibration points, one for each channel at 
each corner of the RGB cube. 

Using these 24 points, linear functions that describe the 
limits for a channel as we move along an outside edge of 
the RGB cube can be generated using interpolation. There 
are twelve of these edges: four describe red channel limits, 
four describe green channel limits, and four describe blue 
channel limits. 

When the limit box for a color is requested, we process 
each channel independently and merge the results to get the 
final box. To process the red channel, the red channel limit 
functions are used. First, the red value for the color is used 
to determine the limit in each of the red channel’s four 
functions. These four points define two new limit functions 
that traverse the green channel dimension. The green value 
for the color is then used to determine the limit in each of 
these two new functions. This gives two limit values that 
are on opposite sides of the RGB cube, spanning the blue 
dimension, which define another function. Now the blue 
value for the color is used to determine a limit value along 
this new function. This value is the red channel limit. 

To determine a green limit, we use the green limit functions 
and the green channel value to establish the four limits (two 
functions), then the red value to determine two limits (one 
function), and the blue value to determine the final limit. 
Blue limits are found by using blue, then red, then green 
color values to repeatedly interpolate. 

It may be noted that the order after the initial selection of 
four points is irrelevant (red  green  blue is equivalent 
to red  blue  green for red channel limits), and in 
practice, we calculate each limit using both approaches and 
cross validate to ensure correctness. Lower limits are 
determined in the same manner. 

EVALUATING THE DIFFERENTIATION MODEL  
To explore the effects of different numbers of samples on 
model quality, and to evaluate the accuracy and 
effectiveness of the models, we gathered a large set of 
empirical differentiation data. The study collected extensive 
data from 16 participants, and investigated three questions: 
• Do models with more input samples perform better 

than those with fewer samples? 
• Do the models perform differently for users with CVD 

compared to those with normal color vision? 
• How robust is the model to moderate changes in 

environmental factors such as light or background? 

Methods 

Participants, Apparatus, and Differentiation Task 
Sixteen volunteers (all male, mean age 26) were recruited 
from the local community. Eight participants had CVD to 
some degree (based on the Ishihara plate test [11]), and 
eight had no indication of CVD. The Ishihara test was 
performed by the authors in a non-clinical setting, and was 
used simply to identify the presence or absence of CVD. 
These tests revealed a mix of protan and deutan effects in 
the participants with CVD. 
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The study was carried out in a room with controlled 
lighting, and used a custom Java application to measure the 
participant’s color differentiation ability. The application 
presented participants with a series of differentiation tests; 
the participant’s job was to state for each test whether the 
two colors on the screen were the same or different, by 
pressing one of two keyboard keys. The participant’s 
responses to these questions were used to empirically 
determine their differentiability limits.  

Each trial presented an 8x6 grid of circles that were 
randomly colored in one of the two colors for that trial. 
(Figure 3) A grid was used to reduce retinal after-image 
effects, by allowing participants to move their gaze around 
the screen. For each test (i.e., to find out the limits for a 
particular input color), the system presented repeated trials 
until the user’s limit was determined. The system first 
presented the furthest possible color from the input color, to 
determine if the participant could differentiate any colors 
from the input color; after that, the system used a binary-
search strategy to narrow down the color values in each 
successive trial. 

 

Figure 3. Experimental task. Participants pressed the “;” key 
if they thought the colors were different, and the “S” key if 

they thought the colors were the same.  

Models with different sample sets 
One of the goals of the study was to determine how 
accuracy is affected by the number of samples in the model. 
A smaller sample set means a shorter calibration, but also 
could mean reduced accuracy. In this study, we gathered 
calibration data from 125 points – that is, from five evenly-
spaced points on each of the RGB channels (values of 0, 55, 
110, 165, and 220). From this data, we built four models: a 
5-sample-per-channel model using all of the data, a 4-
sample-per-channel model using the lower four points from 
the list above, a 3-sample-per-channel model using the 
endpoints and middle value, and a 2-sample-per-channel 
model using only the endpoints. (We shorten the names of 
the models from here on to ‘the n-sample model’) 

Robustness 
The goal of the empirical modeling approach is to increase 
the specificity of the model – to be able to automatically 
include the specific characteristics of the user and their 

environment. One potential risk of this approach, however, 
is an overly-specific model that is too specific to the details 
of the current environment, and thus not effective when any 
of those details change. Although there are unlikely to be 
dramatic changes to the context (e.g., a user’s CVD will not 
switch from one type to another, and a user’s monitor will 
not suddenly switch calibration), there are several ways in 
which minor changes can occur (e.g., lighting conditions 
will change over a work day). 

We wished to determine how quickly our model’s accuracy 
degrades as the environment changes. Therefore, we tested 
the model against several additional sets of test colors 
whose data was gathered under four different 
environmental conditions. We used the same testing 
procedure described above. The additional conditions were: 
• Lighting. In addition to the normal ceiling lighting that 

was used for the standard tests, we gathered test sets 
with low lighting (all lights off), and lamp light (a lamp 
shining on the screen at approximately a 45° angle). 

• Background grey. In addition to the dark grey 
background used for the standard tests (grey level 25), 
we collected test data with two lighter-grey 
backgrounds (grey levels 128 and 230). 

• Monitor color adjustment. The display monitor allows 
the adjustment of color temperature; in addition to the 
normal value of 75, we also collected data with the 
monitor’s adjustment set to 50 and 100. 

• User fatigue. We compared results from the start of the 
testing data with results from the end, to determine 
whether users’ responses change during a session. 

Procedure 
There were three parts to the study: collection of calibration 
data, collection of standard test data, and collection of test 
data under different environmental conditions. 

Part 1: Calibration data. The model is calibrated based on 
empirical samples. In this phase of the study, we gathered 
the 125 samples described above, from which the different 
models were built. Tests at each of the 125 color points 
involved one repetition of the task described above. 

Part 2: Empirical data for model testing. To test the 
accuracy of the various model configurations, we gathered 
empirical data about the user’s actual differentiation limits 
at eight color points that were distributed through the color 
cube (no test colors were equal to the calibration colors). 
Each color was tested 10 times in random order to better 
estimate the user’s true differentiation limits. 

Part 3: Empirical data for robustness tests. To test the 
model’s accuracy when environmental conditions change, 
we also gathered differentiation limits for the eight test 
colors in each of the situations described above. Each color 
was tested only once for these data sets. 

The study took approximately 2.5 hours to complete, and 
each participant completed a total of 7600 tests. 
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To evaluate the model, we carried out two analyses: first, 
we tested the accuracy of the model using the empirical 
differentiation data gathered in part 2 of the study; second, 
we tested the robustness of the model using empirical 
differentiation data gathered in part 3. 

Validating the Model: Accuracy 
The first analysis tested the accuracy of the models by 
comparing the predictions made by the model with the 
empirical data (which was not used in the formation of the 
models). As described above, the model predicts 
differentiation limits for a given color, and we tested the 
predictions for each of the empirically-determined limits 
gathered for the eight test colors in Part 2 of the study. We 
tested four models with different granularities (2, 3, 4, and 
5 samples per channel).  

For each of the eight colors in our test set, the model 
predicted the differentiability limits in the R, G, and B 
channels. Part 2 of the study empirically determined these 
same differentiability limits, and these are used as the ‘true’ 
values against which we compare the model’s predictions.  

To assess the predictor’s accuracy, we consider the two 
types of error that the predictor can make – either over or 
under the true limit value (in addition to the possibility that 
the predictor is exactly correct). We note that the two types 
of error are not equal in real-world terms, since an over-
estimation will result in false negatives (where the model 
says that two colors are not differentiable, and the empirical 
data shows that they are), and an under-estimation results in 
false positives (where the model predicts that two colors are 
differentiable but the empirical data shows that they are 
not). Over-estimation therefore presents much less of a 
problem in terms of the real-world scenario: it avoids 
mistakenly allowing non-differentiable colors to remain in 
the display, but it does reduce the number of colors that can 
be used. 

Based on this analysis, we use the term ‘safe accuracy’ to 
represent the proportion of predictions that are ‘safe’ – that 
is, that will not result in a false positive error. This measure 
(Asafe) is the ratio of exact predictions plus over-estimations 
to the total number of cases.  

It is possible to intentionally increase the predicted limits 
by a constant (called the limit offset), in order to increase 
the over-estimation and reduce the number of false 
positives. This moves the distribution of errors towards the 
‘safe’ side of the mean. The limit offset can be included as 
part of the model, and allows us to tune the way that the 
model trades off false positives and false negatives. We use 
the limit offset as the measure by which we compare 
models – in the tests below, we report the offset needed to 
achieve a safe accuracy of 0.95 (i.e., such that 95% of 
predictions are either correct or over-estimates). 

Figure 4 shows the histogram of prediction errors around 
the empirically-derived value (4-sample model); errors are 
normally distributed around the true value, and the model 

makes approximately the same number of over- and under-
estimates. Table 1 and Figure 5 show our accuracy results. 
We tested accuracy separately for the two groups of 
participants (CVD and non-CVD), to determine whether 
CVD had an effect on the model’s accuracy. We found that 
higher offsets were needed for the participants with CVD to 
maintain the same safe accuracy. 

 
Figure 4. Distribution of errors around the true value for the 

4-sample model (predicted value minus true value). 

Table 1. Mean accuracy results by model granularity: 
Off=offset to reach .95 Asafe; S.D.=st.dev. of estimation errors 

 5-sample 4-sample 3-sample 2-sample 
Group Off. S.D. Off. S.D. Off. S.D. Off. S.D. 
CVD 52 24.3 52 23.5 67 27.5 81 24.8 

nCVD 41 18.0 43 18.7 46 19.0 58 15.7 
All 47 21.1 48 21.1 57 23.2 69 20.2 

 
Figure 5. Accuracy (offset needed to reach .95 Asafe), by model 

granularity and participant group. 

The explanation for the reduced accuracy is that users with 
CVD users generally have much larger values for their 
limits, meaning that the linear interpolation functions hit a 
ceiling (255) much more quickly than for non-CVD users. 
The model therefore has fewer values with which to build 
accurate interpolation functions, resulting in a less accurate 
model with a higher required offset. 

Two further issues to be addressed in our accuracy analysis 
are the relationship between the limit offset and the safe 
accuracy, and to what degree over-estimation will reduce 
the number of colors available to an adaptor system. 
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Relationship between limit offset and safe accuracy 
Figure 6 shows how addition of different limit offsets affect 
safe accuracy. It is clear that covering the last remaining 
cases of under-estimation is expensive in terms of the 
amount of color space that is used; however, it is possible to 
reach any safe-accuracy level, including 100%. 

 
Figure 6. Offset amount vs. safe accuracy (4-sample model) 

Reduction in available color space through overestimation 
Over-estimation ‘uses up’ more colors than necessary in 
order to avoid false positive errors, but the number of colors 
available to an adaptation system depends on several 
factors. First, in a two-color situation, there is little 
problem, since even with a limit offset of 100 on each 
channel, there should still be a large color space remaining 
within the cube, after removing the input color’s limit box. 

If we had a perfect predictor (i.e., no over-estimation 
required), 0.6% of all possible RGB colors would be 
removed on average. Using the 4-sample model, with limit 
offset to maintain 95% safe accuracy, 14.5% of all possible 
RGB colors are eliminated. Even though the model 
eliminates many more colors than necessarily required, it 
still leaves a large set of possible colors to choose from.  

The number of available colors even with a very 
conservative model is large enough to deal with most color 
tasks. For example, even if only three values per channel 
can be used, this is still 27 colors, more than enough for the 
seven maximum that is suggested for categorical encoding 
[6]. 

If needed, it is also possible to reduce the degree of over-
estimation – this allows more false positives, but preserves 
a larger color space for a re-coloring algorithm. However, 
this is unlikely to be a problem except in extreme cases, 
since even large over-estimations of limits still leaves a 
very large number of available colors. 

An extension to this question is the issue of co-
differentiability for larger sets of colors, which is discussed 
in more detail later in the paper. 

Robustness of the Model 
For the evaluation above, we calculated the limit offset 
needed to bring the model’s predictions to 95% safe 
accuracy, and compared this offset value with the offset 
calculated using the standard test set. By testing that model 

against our robustness data (Part 3 of the study), we can 
determine whether the model’s accuracy degrades when 
environmental conditions change by moderate amounts. 
Figure 7 shows our results, using the 4-sample model.  

 
Figure 7. Comparison of offset under different environmental 

conditions (* = from standard test). 

The different environmental factors had different effects on 
the model’s accuracy, and CVD and non-CVD groups also 
had different results. There are both increases and decreases 
to the offset value: increases mean that the model is less 
accurate in these situations and decreases mean that the 
model is more accurate. The size of the changes is not 
dramatic, meaning that the model is not overly sensitive to 
small changes in the environment. Adding 30 to the limit 
offset (for non-CVD users) would handle all of the 
environmental changes that we tested. 

Results for users with CVD differ from non-CVD users. 
There are several potential reasons for this, including the 
fact that the participants with CVD likely had several types 
and severities of CVD. In future work we will look at the 
effects of the different types on these robustness results. 

DISCUSSION 
Our study shows that individualized differentiation models 
can effectively represent and predict users’ color 
differentiation ability. The model has five main strengths:  
• automatic sensitivity to specific characteristics of the user 

and their local environment 
• good performance both for individuals with CVD and 

those with normal color vision 
• robustness to moderate changes in the environment (such 

as light levels or background brightness)  
• a tunable offset that allows different balances between 

false positive rate and color availability 
• the availability of different model granularities that 

provide different prediction accuracy. 

In the following sections we discuss several issues in the 
use and wider deployment of the model. 

Calibration in real use 
When the model is deployed for real users, it will be 
calibrated in the same way as described for part one of our 
study; however, the system will gather data only for the 
granularity of model (e.g., 3-sample) that the user requires. 
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The calibration process is lightweight, involving a series of 
‘same or different’ decisions. Based on the time needed for 
each sample in part one of our study, we estimate that 
calibration will take approximately 4 minutes for a 2-
sample model, 14 minutes for a 3-sample model, and 32 
minutes for a 4-sample model. 

We currently use performance tests at each sample point 
(i.e., a series of ‘same or different’ tests); however, the time 
needed for calibration could potentially be shortened by 
using judgment tests rather than performance tests. In this 
scheme, users would be asked to move a slider until they 
felt that there was a just-noticeable difference between two 
colors on the screen. In future work, we will determine 
whether judgments are comparable to the performance tests. 

It is also possible that the user will need to re-calibrate the 
model when environmental conditions change beyond what 
the current limit offset can adequately handle. However, our 
robustness tests suggest that a single model will be able to 
handle normal variations in an office environment, at least 
for the large majority of a user’s color-use tasks. 

Using the model with a color-adaptation system 
We believe that the individual differentiation model can be 
used with existing color-adaptation schemes without 
requiring major changes to those systems. Where an 
adaptor would previously query a simulation module to 
determine whether colors are likely to be confused, the 
system could now use our model either as a decider or as a 
predictor. As a decider, the model takes two colors and 
determines if they are differentiable (based on the predicted 
limits for those colors); as a predictor, the model returns the 
differentiability box as described earlier. These capabilities 
should allow our model to be used with a wide variety of 
other systems, providing them with the benefit of 
individualized modeling.  

In addition, however, the model can also be used as a color-
adaptation scheme on its own. Adaptation requires that the 
model also be able to choose colors that are differentiable; 
but this requires only a simple extension of the current 
system to select a color that is outside the limit box of a 
starting color. This capability is essentially the same as 
determining a set of n colors that can all be differentiated 
from one another, which we consider next. 

Determining sets of co-differentiable colors 
Some tasks (such as matching the colors in a bar chart with 
colors in the chart legend) require that several colors all be 
differentiable from one another. The ICD model can be 
used for this situation, using a process that ‘packs’ the limit 
boxes for successive colors into the color cube. The general 
algorithm below specifies the process. 

This process can also be used to determine the maximum 
number of colors that are available for a single task. For 
example, if a user’s upper differentiability limit is always a 

value of 50, then 125 different (and co-differentiable) 
colors can be used for a particular task. 

 Choose one color as the starting color 
 Add the starting color’s limit box to a do-not-use region 
 For each additional color that must be co-differentiable: 

      Choose a color just outside the do-not-use region 
      If the do-not-use region equals the color cube, then fail. 
      Add that color’s limit box to the do-not-use region 

We also note that different tasks can re-use the same color 
space. For example, if two colors are used to represent ‘link 
taken’ and ‘link not taken’ in a browser, the same color 
space could be reused for a bar chart in the same display, 
since users will be able to separate the colors based on their 
context.  

We also note that differentiability of colors is not the only 
capability that is required for some interactions. For 
example, recognition of colors is a different task that may 
still be difficult even if colors are differentiable. However, 
these tasks are all based on differentiability (e.g., if colors 
are not differentiable, they cannot be correctly recognized). 

Using the tunable offset in color adaptation 
When the model is used as an adaptation system, the 
tunable offset becomes particularly valuable, as it can be 
used to choose colors that will maximize the likelihood of 
differentiability. For example, if a chart image requires 
three co-differentiable colors, the model can inform an 
algorithm that maximizes the distance between these colors 
based on the user’s perception. In addition, the model can 
report exactly how accurate its choices are, since the 
distances between the colors can be used to determine the 
probability of false positive (exactly as the limit offset is 
used in Figure 6).  

In situations where more colors are required than what can 
be provided with the specified safe accuracy, the model can 
report the actual probability of false positive errors based 
on its attempt to maximize distance between the colors. 

Defining colors in terms of differentiability 
The capabilities of the empirical model lead to some ideas 
that could change the way in which color is used in 
information presentations. One novel possibility extending 
the SmartColor [23] approach is the idea of letting 
designers specify a set of requirements for a color, rather 
than the color itself. These requirements would be specified 
in a description language (e.g., the way that XML-based 
languages such as XUUL are used to specify interfaces), 
and would be related to the function of the color rather than 
its visual properties. For example, a color could have the 
requirement that it be differentiable from another color used 
in the presentation. If a model such as ICD is used, the 
system could automatically choose colors that will satisfy 
the requirements, taking into consideration the user and the 
local environment. 

Taking this idea one step further, it is possible to model 
other perceptual interactions with color and include these in 
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the specification. For example, color-based ‘popout,’ which 
works when two colors are sufficiently different from one 
another, could potentially be defined as a particular amount 
of separation using the modeling architecture described 
above. A requirement for popout could then be constructed 
– and when the system encountered this requirement, it 
could calculate (based on the user’s individual model) what 
color difference would provide popout, and choose colors 
accordingly. 

CONCLUSION AND FUTURE WORK 
Differentiating colors used in computer systems can be 
difficult in many situations. Current solutions adapt colors 
based on standard simulations of CVD, but these models 
cover only a fraction of the ways in which color perception 
can vary. We developed an individualized model of color 
differentiation to improve accuracy of color adaptation. We 
showed through empirical testing that models can be 
successfully built for individuals with and without CVD, 
and with sufficient accuracy for many color-differentiation 
tasks. The model is tunable to balance prediction accuracy 
and color availability, requires only a short calibration 
phase, and is reasonably robust when environmental 
conditions change. Adaptation systems should be able to 
use our model immediately, leading to better usability of 
information visualizations for a wide variety of users. 

Our future work will progress in two directions. First, we 
will refine and extend the model by exploring different 
interpolation functions, different sampling methods, and 
different types of input tests; we will also consider other 
types of color tasks that can be modeled, and will confirm 
our results with a wider range of participants. Second, we 
will deploy the model in realistic situations: we will build 
the color-replacement mechanism described above, and will 
develop a calibration package to allow wider testing of the 
approach. Last, we are exploring the range of color tasks in 
information visualization that could be modeled and 
specified in a computational description language. 
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