

Lowering the Barrier to
Applying Machine Learning

Abstract
Researchers have used machine learning algorithms to
solve hard problems in a variety of domains, enabling
exciting, new applications of computing. However,
research results have not transferred to software
solutions. In part, this is because developing software
with machine learning algorithms is itself difficult. My
dissertation work aims to understand why using
machine learning is difficult and to create tools that
lower the bar so that more developers can effectively
use machine learning.

Keywords
Machine Learning, Software Development, Integrated
Development Environments

ACM Classification Keywords
H5.2 Information Interfaces and Presentation: User
Interfaces; D2.6 Programming Environments:
Integrated Environments.

General Terms
Human Factors

Introduction
Machine learning systems are used to address hard
problems in a variety of domains. For example,
researchers have used learning techniques to model
human activity [3] and understand the human genome
[5]. These tasks are high value: activity modeling
allows us to track our environmental impact and
genetic analyses allow us to better diagnose diseases.
Moreover, these tasks are impossible without robust
learning solutions. However, few applications take
these research findings and turn them into software
solutions. My research is motivated by the observation
that much of this difficulty stems from the lack of
appropriate tools -- few tools support the development
of learning-based software. My goal is to develop new
tools that enable the broad impact of machine learning
by supporting developers as they iteratively design,
test, and refine learning-based software. This is a
critical challenge for advancing the role of machine
learning in computer science research and practice.

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

Kayur Patel
Computer Science and Engineering
DUB Group
University of Washington
Seattle, WA 98105
kayur@cs.washington.edu

Second Author
VP, Authoring
Authorship Holdings, Ltd.
Authors Square
Authorfordshire, UK AU1 2JD
author2@author.ac.uk

Third Author
AnotherCo, Inc.
123 Another Ave.
Anothertown, PA 54321 USA
author3@anotherco.com

Fourth Author
YetAnotherCo, Inc.
123 YetAnother Ave.
YetAnothertown, PA 54321 USA
author4@yetanotherco.co m

CHI 2010: Doctoral Consortium April 10–15, 2010, Atlanta, GA, USA

2907

My dissertation work aims to understand the
deficiencies in current tools as well as propose and
build new tools that can address the difficulties involved
in implementing learning-based software. Specifically,
my contribution is three-fold. First, I aim to understand
the difficulties of using machine learning, not only in
the choice of learning algorithms but also in the entire
process from collecting data to testing a trained model.
I have conducted interviews and laboratory studies
observing how developers work with state-of-the-art
tools, and I have distilled the process they use while
building a machine learning system. Second, I aim to
create new tools to address the deficiencies of current
state-of-the-art tools. To this end, I have begun work
on Gestalt, an integrated development environment
(IDE) that supports the application of machine learning
techniques. Third, I will show how the novel features of
Gestalt help with the development of systems that
leverage machine learning.

Understanding the Process
Figure 1 illustrates a classification pipeline that is
typical of many machine learning applications. Data
must be collected in some raw format, which is
processed to extract feature vectors, which are used to
train a model, which is then evaluated in experiments.
To inform our design of new tools and understand the
current process developers take, I conducted two
studies that examined the challenges developers
encounter when using existing tools [4]. First, I
interviewed eleven researchers who had built
learning-based software. The researchers described and
diagrammed their processes, discussing not only
successful strategies but also pitfalls and difficulties. I
interviewed researchers with machine learning
expertise as well as researchers relatively new to

machine learning who were applying it in their
research. I reasoned this mixture of expertise would
uncover difficulties that people encounter in applying
machine learning as well as best practices for
overcoming those difficulties. My second study sought
to further ground the results of my interviews through
laboratory observations of actual work. Ten new
participants each spent five hours building the machine
learning component of a small application, a simple
handwriting recognition engine. Participants provided
input at all stages of the learning system: they
collected data, wrote Java code to generate features,
trained models using the Weka library, and conducted
experiments to test the accuracy of their system.

From the results, I distilled three main difficulties that
developers face when using machine learning. First, the
studies show that the successful application of machine
learning is generally based in an iterative and
exploratory process. A developer examines all of the
steps in the pipeline to find the step where they can
make changes that will have the most impact on how
well the entire system works. Second, the studies show
that developers often have good intuitions about the
individual links in their chain (e.g., their data and their
features), but find it hard to understand the
relationship between accuracy and these familiar parts
of the machine learning system. Third, developers have
difficulty evaluating the learning system in the context
of their application. Developers are often concerned
with more than just accuracy. For example, a developer
of an embedded system may care about speed of
feature computation and classification (because this
code needs to run on the embedded device), and might
be willing to make tradeoffs in classification accuracy
related to this performance.

Figure 1: Applying machine
learning requires collecting
data, extracting features,
training a model, and
conducting experiments to
evaluate a system.

CHI 2010: Doctoral Consortium April 10–15, 2010, Atlanta, GA, USA

2908

Building Better Tools
Prior work within the HCI community has focused on
building structured tools to help developers with a
specific learning task. For example, the Crayons
system, created by Fails and Olsen, makes it easy for
developers and designers to create models for an
image segmentation task [1], and Exemplar, created by
Hartmann et al., provides a direct manipulation
approach for training systems based on sensors [2].
These tools are each based in an understanding of the
problem they address, are built to support that
problem, and typically attain their ease of use by
limiting user contribution to a small set of points in the
classification pipeline. In Crayons, for example, the only
supported interaction is to color pixels. Structured tools
are powerful approaches for solving their particular
problems, but these tools lack flexibility to adapt to
new or different scenarios.

A developer working on a new or different problem
needs flexibility. General programming languages, such
as Java, or integrated environments such as Matlab,
are flexible enough to represent any problem. Support
for these flexible systems consists of APIs, such as
Weka, which provide standard working implementations
of algorithms or features [6]. However, developers
using these tools, especially developers without much
machine learning experience, often do not know where
to begin. Therefore, my goal is to create new tools that
support the entire process of applying machine learning
while providing the flexibility that developers need to
solve their problems.

To address the deficiencies in current tools, I have
begun work on Gestalt, a general environment
supporting the application of learning techniques.

Gestalt makes it easy to iterate on steps in the pipeline
and to understand relationships between data,
features, and results. Like most IDEs, Gestalt has
standard text editing and project management
capabilities. In addition, Gestalt provides structure
through an explicit representation of the classification
pipeline and flexibility by allowing developers to change
individual parts of the pipeline by writing new scripts.

The first classification pipeline that developers build
usually does not work. Our studies show that
developers have to iterate on different steps in the
pipeline to create a working solution. In structured
tools, developers iterate by performing a few domain-
specific actions. Flexible tools provide developers with
more control but lack the feedback needed to
determine what to do next. Connecting the data,
features, and results can provide the feedback needed
for developers to understand how the system is
behaving so they can iterate. Current flexible tools
make it hard to connect the steps in the classification
pipeline. Gestalt provides explicit support for
connecting the steps in the pipeline and provides
interactive visualizations through which developers can
quickly sort, filter, and color examples to drill down into
the data they need.

The current version of Gestalt is focused on a single
pipeline and a limited number of visualizations based
on viewing raw data. In my dissertation work, I plan to
add additional capabilities that focus on visualizations
for other steps in the pipeline (e.g., feature generation)
and provide support for more than one pipeline. For
example, I plan to extend Gestalt to keep track of
changes to the pipeline. This will allow developers to

Figure 2: Gestalt provides
flexibility through an
explicit representation of
the classification pipeline
and flexibility by allowing
developers to edit and
change each step in
pipeline by writing a
python script.

CHI 2010: Doctoral Consortium April 10–15, 2010, Atlanta, GA, USA

2909

compare different versions of a pipeline and tie their
actions to changes in model performance.

Testing Gestalt
In my dissertation, I plan to study how Gestalt helps
developers effectively use machine learning. I have
already conducted a lab study looking at how Gestalt
helps developers debug existing classification pipelines.
Side-by-side visualizations of data, features, and
results help developers understand learning bugs. In
current tools, creating side-by-side visualizations is
hard. Even a flexible environment like Matlab, which
provides functionality for building visualizations, fails to
provide support for connecting steps in the pipeline. In
contrast, the visualizations in Gestalt are specifically
designed to be connected.

In an initial test of Gestalt, I compared it to a baseline
condition similar to Matlab. I created solutions for two
different learning problems. Each solution was injected
with bugs, and participants were asked to find the bugs
using the features of the tool they were given. The
study found that (1) all of our participants preferred
Gestalt, and (2) they found more bugs and spent more
time looking at visualizations when using Gestalt.
Future studies will look at how Gestalt can provide
better support for other difficult tasks, such as creating
a new pipeline for an unknown problem or selecting the
right set of features for a particular problem.

Contributions
In my dissertation, I will provide three specific
contributions. First, I will contribute results from
studies that describe the difficulties faced by developers
using machine learning techniques. Second, I will
create Gestalt, a development environment that lowers

the bar for developing machine learning solutions.
Finally, I will contribute results from studies evaluating
the effectiveness of the methods presented in Gestalt.

Acknowledgements
Thanks to James Fogarty, James Landay, Steven
Drucker, and Andrew Ko for guidance and advice.

Citations
[1] Fails, J.A. and Olsen, D.R. (2003). A Design Tool
for Camera-Based Interaction. Proceedings of the ACM
Conference on Human Factors in Computing Systems
(CHI 2003), 449-456.

[2] Hartmann, B., Abdulla, L., Mittal, M. and Klemmer,
S.R. (2007). Authoring Sensor-Based Interactions by
Demonstration with Direct Manipulation and Pattern
Recognition. Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI 2007),
145-154.

[3] Lester, J., Choudhury, T., Kern, N., Borriello, G.
and Hannaford, B. (2005). A Hybrid
Discriminative/Generative Approach for Modeling
Human Activities. International Joint Conference on
Artificial Intelligence (IJCAI 2005), 766-772.

[4] Patel, K., Fogarty, J., Landay, J.A. and Harrison, B.
(2008). Investigating Statistical Machine Learning as a
Tool for Software Development. Proceedings of the ACM
Conference on Human Factors in Computing Systems
(CHI 2008), 667-676.

[5] Wang, H., Segal, E., Ben-Hur, A., Koller, D. and
Brutlag, D. (2004). Identifying Protein-Protein
Interaction Sites on a Genome-Wide Scale. Proceedings
of the Conference on Neural Information Processing
Systems (NIPS 2004),

[6] Witten, I.H. and Frank, E. (1999). Data Mining:
Practical Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufmann.

CHI 2010: Doctoral Consortium April 10–15, 2010, Atlanta, GA, USA

2910

