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Abstract 
Researchers have used machine learning algorithms to 
solve hard problems in a variety of domains, enabling 
exciting, new applications of computing. However, 
research results have not transferred to software 
solutions. In part, this is because developing software 
with machine learning algorithms is itself difficult. My 
dissertation work aims to understand why using 
machine learning is difficult and to create tools that 
lower the bar so that more developers can effectively 
use machine learning. 
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Introduction 
Machine learning systems are used to address hard 
problems in a variety of domains. For example, 
researchers have used learning techniques to model 
human activity [3] and understand the human genome 
[5]. These tasks are high value: activity modeling 
allows us to track our environmental impact and 
genetic analyses allow us to better diagnose diseases. 
Moreover, these tasks are impossible without robust 
learning solutions. However, few applications take 
these research findings and turn them into software 
solutions. My research is motivated by the observation 
that much of this difficulty stems from the lack of 
appropriate tools -- few tools support the development 
of learning-based software. My goal is to develop new 
tools that enable the broad impact of machine learning 
by supporting developers as they iteratively design, 
test, and refine learning-based software. This is a 
critical challenge for advancing the role of machine 
learning in computer science research and practice. 
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My dissertation work aims to understand the 
deficiencies in current tools as well as propose and 
build new tools that can address the difficulties involved 
in implementing learning-based software. Specifically, 
my contribution is three-fold. First, I aim to understand 
the difficulties of using machine learning, not only in 
the choice of learning algorithms but also in the entire 
process from collecting data to testing a trained model. 
I have conducted interviews and laboratory studies 
observing how developers work with state-of-the-art 
tools, and I have distilled the process they use while 
building a machine learning system. Second, I aim to 
create new tools to address the deficiencies of current 
state-of-the-art tools. To this end, I have begun work 
on Gestalt, an integrated development environment 
(IDE) that supports the application of machine learning 
techniques. Third, I will show how the novel features of 
Gestalt help with the development of systems that 
leverage machine learning.   

Understanding the Process 
Figure 1 illustrates a classification pipeline that is 
typical of many machine learning applications. Data 
must be collected in some raw format, which is 
processed to extract feature vectors, which are used to 
train a model, which is then evaluated in experiments. 
To inform our design of new tools and understand the 
current process developers take, I conducted two 
studies that examined the challenges developers 
encounter when using existing tools [4]. First, I 
interviewed eleven researchers who had built 
learning-based software. The researchers described and 
diagrammed their processes, discussing not only 
successful strategies but also pitfalls and difficulties. I 
interviewed researchers with machine learning 
expertise as well as researchers relatively new to 

machine learning who were applying it in their 
research. I reasoned this mixture of expertise would 
uncover difficulties that people encounter in applying 
machine learning as well as best practices for 
overcoming those difficulties. My second study sought 
to further ground the results of my interviews through 
laboratory observations of actual work. Ten new 
participants each spent five hours building the machine 
learning component of a small application, a simple 
handwriting recognition engine. Participants provided 
input at all stages of the learning system: they 
collected data, wrote Java code to generate features, 
trained models using the Weka library, and conducted 
experiments to test the accuracy of their system.  

From the results, I distilled three main difficulties that 
developers face when using machine learning. First, the 
studies show that the successful application of machine 
learning is generally based in an iterative and 
exploratory process. A developer examines all of the 
steps in the pipeline to find the step where they can 
make changes that will have the most impact on how 
well the entire system works. Second, the studies show 
that developers often have good intuitions about the 
individual links in their chain (e.g., their data and their 
features), but find it hard to understand the 
relationship between accuracy and these familiar parts 
of the machine learning system. Third, developers have 
difficulty evaluating the learning system in the context 
of their application. Developers are often concerned 
with more than just accuracy. For example, a developer 
of an embedded system may care about speed of 
feature computation and classification (because this 
code needs to run on the embedded device), and might 
be willing to make tradeoffs in classification accuracy 
related to this performance. 

  

Figure 1: Applying machine 
learning requires collecting 
data, extracting features, 
training a model, and 
conducting experiments to 
evaluate a system. 
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Building Better Tools 
Prior work within the HCI community has focused on 
building structured tools to help developers with a 
specific learning task. For example, the Crayons 
system, created by Fails and Olsen, makes it easy for 
developers and designers to create models for an 
image segmentation task [1], and Exemplar, created by 
Hartmann et al., provides a direct manipulation 
approach for training systems based on sensors [2]. 
These tools are each based in an understanding of the 
problem they address, are built to support that 
problem, and typically attain their ease of use by 
limiting user contribution to a small set of points in the 
classification pipeline. In Crayons, for example, the only 
supported interaction is to color pixels. Structured tools 
are powerful approaches for solving their particular 
problems, but these tools lack flexibility to adapt to 
new or different scenarios. 

A developer working on a new or different problem 
needs flexibility. General programming languages, such 
as Java, or integrated environments such as Matlab, 
are flexible enough to represent any problem. Support 
for these flexible systems consists of APIs, such as 
Weka, which provide standard working implementations 
of algorithms or features [6]. However, developers 
using these tools, especially developers without much 
machine learning experience, often do not know where 
to begin. Therefore, my goal is to create new tools that 
support the entire process of applying machine learning 
while providing the flexibility that developers need to 
solve their problems. 

To address the deficiencies in current tools, I have 
begun work on Gestalt, a general environment 
supporting the application of learning techniques. 

Gestalt makes it easy to iterate on steps in the pipeline 
and to understand relationships between data, 
features, and results. Like most IDEs, Gestalt has 
standard text editing and project management 
capabilities. In addition, Gestalt provides structure 
through an explicit representation of the classification 
pipeline and flexibility by allowing developers to change 
individual parts of the pipeline by writing new scripts.  

The first classification pipeline that developers build 
usually does not work. Our studies show that 
developers have to iterate on different steps in the 
pipeline to create a working solution. In structured 
tools, developers iterate by performing a few domain-
specific actions. Flexible tools provide developers with 
more control but lack the feedback needed to 
determine what to do next. Connecting the data, 
features, and results can provide the feedback needed 
for developers to understand how the system is 
behaving so they can iterate. Current flexible tools 
make it hard to connect the steps in the classification 
pipeline. Gestalt provides explicit support for 
connecting the steps in the pipeline and provides 
interactive visualizations through which developers can 
quickly sort, filter, and color examples to drill down into 
the data they need. 

The current version of Gestalt is focused on a single 
pipeline and a limited number of visualizations based 
on viewing raw data. In my dissertation work, I plan to 
add additional capabilities that focus on visualizations 
for other steps in the pipeline (e.g., feature generation) 
and provide support for more than one pipeline. For 
example, I plan to extend Gestalt to keep track of 
changes to the pipeline. This will allow developers to 

 

Figure 2: Gestalt provides 
flexibility through an 
explicit representation of 
the classification pipeline 
and flexibility by allowing 
developers to edit and 
change each step in 
pipeline by writing a 
python script. 
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compare different versions of a pipeline and tie their 
actions to changes in model performance. 

Testing Gestalt 
In my dissertation, I plan to study how Gestalt helps 
developers effectively use machine learning. I have 
already conducted a lab study looking at how Gestalt 
helps developers debug existing classification pipelines. 
Side-by-side visualizations of data, features, and 
results help developers understand learning bugs. In 
current tools, creating side-by-side visualizations is 
hard. Even a flexible environment like Matlab, which 
provides functionality for building visualizations, fails to 
provide support for connecting steps in the pipeline. In 
contrast, the visualizations in Gestalt are specifically 
designed to be connected.  

In an initial test of Gestalt, I compared it to a baseline 
condition similar to Matlab. I created solutions for two 
different learning problems. Each solution was injected 
with bugs, and participants were asked to find the bugs 
using the features of the tool they were given. The 
study found that (1) all of our participants preferred 
Gestalt, and (2) they found more bugs and spent more 
time looking at visualizations when using Gestalt. 
Future studies will look at how Gestalt can provide 
better support for other difficult tasks, such as creating 
a new pipeline for an unknown problem or selecting the 
right set of features for a particular problem. 

Contributions 
In my dissertation, I will provide three specific 
contributions. First, I will contribute results from 
studies that describe the difficulties faced by developers 
using machine learning techniques. Second, I will 
create Gestalt, a development environment that lowers 

the bar for developing machine learning solutions. 
Finally, I will contribute results from studies evaluating 
the effectiveness of the methods presented in Gestalt. 
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