

Critical Point, A Composition for Cello
and Computer

Abstract
Critical Point is written for solo cello and interactive
computer music system with two to four channel sound
system and computer animation. The cellist plays from
a score, and the computer records and transforms the
cello sounds in various ways. Graphics and video are
also projected. The computer-generated graphics are
affected by audio from the live cellist. Critical Point is
written in memory of the artist Rob Fisher.

Keywords
Computer Music, Interactive, Performance, Animation,
Cello, Multimedia

ACM Classification Keywords
H5.5 [Information interfaces and presentation (e.g.,
HCI)] Sound and Music Computing; H5.1 [Information
interfaces and presentation (e.g., HCI)] Multimedia
Information Systems.

General Terms
Design

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

Roger Dannenberg

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15217 USA

rbd@cs.cmu.edu

Tomas Laurenzo

Facultad de Ingeniería

Universidad de la República

Herrera y Resissig 565, piso 5

Montevideo, Uruguay 11300

laurenzo@fing.edu.uy

CHI 2010: Media Showcase Session 1 April 10–15, 2010, Atlanta, GA, USA

2985

Introduction
Computer music encompasses many approaches to the
composition and performance of music. The work
“Critical Point” explores the use of computing to extend
the capabilities and sound palette of a traditional
acoustic instrument, the cello. The traditional
performance setting is also extended by real-time
animation and video.

One of the motivations for computing in music is to
impose fresh perspectives and constraints on
composition and performance. This in turn stimulates
creative thinking, leads to new artistic and scientific
discoveries, and offers new ways to connect audiences
to contemporary art.

This discussion of Critical Point includes some thoughts
by the composer and animator on their intentions and
processes. We also include some technical details on
the realization of Critical Point.

The Music
Critical Point was originally written in 2006 for the U3
festival of university composers in Pittsburgh. Hampton
Mallory, who was at the time teaching the composer’s
son, agreed to perform the piece. The musical material
for the cello was sketched, played, and discussed
almost weekly over a couple of months. The cello has
an extremely wide pitch range, and it seems that
cellists can play almost anything, but there are physical
limits on what chords are possible. It was very helpful
to try different possibilities before actually writing the
piece.

The main musical goal is to give the cellist an expanded
instrument through computation, capable of new

sounds and sonic textures, but at the same time giving
as much expressive control as possible to the cellist. To
accomplish this, almost all sounds from the computer
originate from the live cello. In spite of extreme audio
effects, the sounds still carry the imprint of the
performer and give quite a range of control, including
the overall tempo and pacing, the quality of the sound,
the dynamics (loudness) and the overall “shape” of the
piece. Of course, the acoustic cello sound is important
too, and the performer is called upon to play with a
variety of sounds ranging from harsh almost scraping
sounds to intensely pure melody.

There are also sections where the cellist is allowed to
improvise. For the most part, pitches are provided, but
rhythm is optional. This allows the cellist to engage in a
kind of call-and-response dialog with the electronics,
which echoes processed sounds from the cello. The
cellist can wait for just the right moment to continue.

The digital audio effects include a variety of techniques.
The most often used processing is a combination of
pitch shifting with delay and feedback. This is used to
create complex polyphonic textures of cello sound.
Sometimes, random algorithms are used to modify the
delay and pitch shift amounts rapidly, resulting in even
more complexity and variation. Another effect is a
vocoder that filters the cello to mimic vowel sounds
spoken or sung live by the performer. Some of these
vowels are also recorded and applied to the cello when
the performer is no longer vocalizing. Finally, there is a
prominent section where rising and falling glissandi are
recorded and overlapped to create the effect of
continuously rising or falling sheets of sound.

CHI 2010: Media Showcase Session 1 April 10–15, 2010, Atlanta, GA, USA

2986

The Animation and Video
In 2009, the second author created the animation
component of Critical Point for a performance by the
Pittsburgh New Music Ensemble (see figure 1). The
inspiration for the images came directly from Rob
Fisher’s work [1].

figure 1. A still image from “Critical Point.”

The animation mixes reactive graphics generated in
real time with short segments of recorded video. The
images are intended for projection onto the cellist who
performs near the projection screen or surface. The
idea is to play with the canvas/performer relationship,
and the performer’s shadow is a key element of the
visual composition.

The animation process is roughly synchronized to the
performance so that the animation can coordinate with
both the audio effects and the cello music. In addition,
the animation receives an audio signal from the cello so
that some graphical details are controlled directly by

the intensity of sound. As with the audio processing,
however, there are random elements applied to the
image generation. Thus, the images are partly
controlled by the performer and partly independent.

The Implementation
Critical Point is implemented using Aura [2], a software
framework for building real-time, interactive music
compositions and applications. Aura, in turn, is written
in C++ to obtain efficient computation, straightforward
extensibility, and to allow debugging and development
with standard, mature programming tools. However,
the actual programming of Critical Point is divided
among (1) low-level audio processing in C++, (2) a
graphical programming language for software digital
audio patching (part of the Aura system), and (3)
Serpent, a real-time scripting language (also a part of
the Aura system).

The animation runs on a second computer dedicated to
this task. The animation software is implemented in
openFrameworks (openframeworks.cc), which is a
software framework written in C++.

During the performance, a human (usually the
composer) uses a graphical interface to cue various
changes in audio and animation processing while
following the cellist’s progress in the written musical
score. On the audio side, these cues change
parameters and alter connections between software
signal processing modules. On the animation side, the
cues control parameters and flags that in turn
determine which routines are used to generate each
frame of the projected video.

CHI 2010: Media Showcase Session 1 April 10–15, 2010, Atlanta, GA, USA

2987

Conclusion
We hope that Critical Point offers an interesting
experience to the listener and viewer. We find it
interesting that Critical Point takes its form and
direction from multiple sources. The composer and
animator establish the design of the main musical and
visual elements. The computer generates reactive
forms algorithmically and stochastically. Finally, the
performer is constantly making creative decisions and
responding to sound, light, and perhaps even the
audience. We believe that accepting and integrating
creative input from all of these sources leads to an
artistic result with many interconnected layers and
structures.

Acknowledgements
We would like to thank previous performers of Critical
Point, including Jason Duckles, Norbert Lewandowski,
Richard Dannenberg, and especially Hampton Mallory
for their dedication to this project. Thanks also to the
Universidad de la República, Uruguay, for financing
travel that made our collaboration possible.

References
[1] Rob Fisher Sculpture, LLC.
http://www.sculpture.org/portfolio/sculptorPage.php?sc
ulptor_id=1000080

[2] Dannenberg, R.B. A Language for Interactive Audio
Applications. In Proc. of the 2002 Intl. Comp. Music.
Conf. Intl. Comp. Music Assn. (2002).

CHI 2010: Media Showcase Session 1 April 10–15, 2010, Atlanta, GA, USA

2988

