
Making Policy Decisions Disappear
into the User’s Workflow

Abstract
Complaints of security interfering with getting work
done often arise when users are distracted from their
tasks to make policy decisions. We have identified
what is missing from earlier security interaction designs
that leads to these interruptions. Explicitly represen-
ting policy decisions in the user interface as items rele-
vant to the application and providing application-
specific controls for changing those policies has allowed
us to reliably infer users’ desired policy decisions from
actions they take as they work. This paper describes
the underlying principles and how they resulted in an
interaction design that does not interfere with the us-
er’s work.

Keywords
Usable security

ACM Classification Keywords
D.4.6 [Security and Protection] Access Controls; H.5.2
[User Interfaces]: User-centered design

General Terms
Human Factors, Security

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

Alan H. Karp

Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94304 USA

alan.karp@hp.com

Marc Stiegler

Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94304 USA

marc.d.stiegler@hp.com

CHI 2010: Work-in-Progress (Spotlight on Posters Days 1 & 2) April 10–15, 2010, Atlanta, GA, USA

3247

Introduction

The user interfaces we encounter daily often interrupt
our work to ask us to make policy decisions, such as
changing a Facebook privacy setting to share a photo
or Windows 7 asking to elevate privilege to carry out a
request. The software asks because only the user is in
a position to know what policy to apply. What would be
the impact of a system that made security invisible be-
cause it could infer the user’s wishes from actions taken
as part of the application tasks? Before we can answer
that question, we need such software for testing. The
key contribution of this paper is to present principles
for interaction designs that make it possible to infer the
user’s desired policy without asking.

The principles we propose are not specifically designed
to reduce human error [13] or for automating the proc-
ess of making security decisions [5]. These principles
might be used to build better interaction designs for
authoring security policies [17], but our work primarily
focuses on inferring users’ policy decisions as they go
about their work.

Making security disappear
Today’s systems sacrifice usability when adding secu-
rity. Warning dialog boxes don’t provide sufficient in-
formation to allow the user to assess the risk. There is
no way on existing systems to express which of a user’s
rights to apply to a request, which is the root cause of
the Confused Deputy [7]. Systems do not support at-
tenuated delegation, leaving users with the dilemma of
sharing credentials or not getting their work done. Au-
thenticating users when in the middle of a task inter-
feres with their work.

These observations led us to identify four dimensions to
avoiding the need to trade usability for security.

Dimension 1: Information
We should give users the information they need to
make intelligent decisions. If we don’t, they are likely
to be unhappy the result of not understanding the im-
plications of the decision.

Following the 10 guidelines for usable security [21]
enhances the usability of the security mechanisms.
Most of these principles are related to giving users the
information they need. For example, “Present objects
and actions using distinguishable, truthful appear-
ances.” Surprisingly, most systems in common use
implement none of these principles.

Dimension 2: Expressiveness
We need to let users express the modes of sharing they
need to get their work done. If we don’t, they will find
the workarounds required to do their jobs an impedi-
ment.

A decade of building systems for collaborative work and
observing how people share led to a search for com-
monalities [20]. (We have been surprised by our in-
ability to find references for such a list in either the
computer science or the sociology literature.) The six
identified aspects of sharing are

• Dynamic: No admin needed to approve a change.
• Cross-domain: No one party is in charge.
• Attenuated: Take a dollar, but not my wallet.
• Chained: Re-delegating a delegated right.
• Composable: Use rights from different sources.
• Accountable: Who is responsible, not who acted.

Each time the security blocks one of these modes of
sharing, the user must find a workaround. Despite the
abundance of collaboration software products, it is like-

CHI 2010: Work-in-Progress (Spotlight on Posters Days 1 & 2) April 10–15, 2010, Atlanta, GA, USA

3248

ly that email is so widely used for collaborating because
only it supports all six aspects of sharing.

Dimension 3: Control
We must give users the means to express their deci-
sions. If we don’t, they will be frustrated by the inabil-
ity of the application to carry out their wishes. One
approach is to open a dialog box for every decision.
Such security by admonition interferes with the user’s
work, often without enforcing the user’s desired policy.

CapDesk [19] uses capabilities [4] because that is the
only mechanism that has been shown to support all six
aspects of sharing while enforcing access control at fine
granularity. CapDesk adapts the fundamental property
of capabilities, combining designation with authoriza-
tion, to the interaction design by using acts of designa-
tion to denote the desired authorizations. For example,
in CapDesk dragging the icon for a file onto the icon for
an editor designates that the user wants to use that
editor with the file. CapDesk infers that the user wants
to grant the process running the editor the authority to
read and write the designated file. The result is that the
user is not distracted from the task of editing the file to
specify the desired policy. Existing systems avoid this
problem at the cost of violating the Principle of Least
Privilege [18] by granting all the user’s rights to every
process the user runs. CapDesk demonstrates that this
large vulnerability to viruses is unnecessary.

Dimension 4: Time
The interaction design must let users make policy deci-
sions at a time that doesn’t interrupt their work.
Groove [16] asks users to determine the trustworthi-
ness of a message sender’s authentication when the
message is received, which interferes with the user’s
task of reading the message. Instead, we can make

this authentication step part of a different user task,
that of establishing a new relationship. It’s the same
work, but it’s done at a different time so that it be-
comes part of the user’s workflow.

Applying the concepts
Policy decisions are subject to change, and we don’t
want to interfere with the user’s work when they do.
CapDesk replicates an existing user experience, that of
a conventional desktop. That constraint limits the pol-
icy decisions that can be expressed directly in the user
interface. We had more freedom with the design of
SCoopFS [11], (Simple Cooperative File Sharing, the
“F” is silent). We used this freedom to design an inter-
action that lets us infer users’ policy decisions.

ScooFS gets a high score on the information axis be-
cause of the way it displays application elements.
SCoopFS also gets a high score on the expressiveness
axis because it uses capabilities, which lets it support
all six aspects of sharing. Like CapDesk, SCoopFS uses
acts of designation in the user interface to infer acts of
authorization. However, SCoopFS scores higher on the
control axis because it represents policy decisions as
elements in the application’s user interface and pro-
vides application-specific mechanisms for manipulating
these policies. SCoopFS also scores well on the time
axis because care was taken to make sure policy deci-
sions are made when they fit the user’s activity.

We proposed interaction designs based on earlier ver-
sions of these principles for two HP products. Halo [8]
is HP’s video conferencing system, which gives people
in different locations the sense that they are at a com-
mon table. While the physical components met that
goal, the user interface for such things as dial-in par-
ticipants did not. Our proposal [15], which was par-

CHI 2010: Work-in-Progress (Spotlight on Posters Days 1 & 2) April 10–15, 2010, Atlanta, GA, USA

3249

tially adopted for the product, uses a visual metaphor
to represent the shared elements in the room, such as
the telephone and overhead cameras.

Another part of our proposal, which was not adopted,
allowed control over who could book which rooms.
Each user would have a web page listing the rooms that
user could book. Each page would have a means to
delegate the right to book a subset of those rooms and
a means to revoke such delegations.

We also proposed a similar system for managing the
physical resources in the HP-Intel-Yahoo! Cloud offer-
ing, Open Cirrus [9]. Users would manage their alloca-
tions of CPUs and storage from a web page showing
what was in use, what they had delegated to whom,
and what was currently available. Widgets in the inter-
face were to provide for managing policy decisions
made on these resources.

Policy decisions as controllable objects
We identified four principles that let the system infer
the desired policy from the user’s workflow.

• Every object separately controllable by the us-
er should be represented in the application us-

er interface by a capability that is uniquely dis-
tinguishable to the user.

• Every possible policy decision on an object
should appear as a unique affordance in the
application user interface.

• Every policy decision the user has made should
be represented in the application user interface
by a capability that is uniquely distinguishable
to the user.

• Every possible change to a previously made
policy decision should appear in the application
user interface as a unique affordance.

If the system follows these principles, every action tak-
en in the user interface that affects policy will be
unique. Since there is no ambiguity in determining the
user’s intent, there is no need to interrupt the user’s
work with a question.

Figure 1 shows an application of the last two of these
principles. The second line in the grid shows that “Me,”
a pseudonym for the user, granted read and write per-
mission (the double headed arrow under “Mode”) for
the file “decideRightSetup.zip” to “AlanXP” on Novem-
ber 25. The grayed buttons show the actions that the

Figure 1: Shares view in SCoopFS.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 1 & 2) April 10–15, 2010, Atlanta, GA, USA

3250

user can take on this sharing relationship. In this case
they are only “Unshare,” which revokes the privileges,
and “Snapshot Share,” which makes a private copy of
the file in its current state.

Figure 1 also shows how we use filtering to simplify
dealing with large numbers of policy decisions. Clicking
the “Show Shares” button when an item is selected
results in a view showing all sharing relationships in-
volving that file. Another view shows all the sharing
relationships with a given party.

Other considerations
We have shown how these principles apply to access
control, but there are other kinds of security policy.
For example, deciding whether or not to encrypt com-
munications is often left to the user. One approach
that lets the user decide is to make the communication
channel a “separately controllable object” and include
separate buttons for sending encrypted or not.

The danger with all these affordances is an overly com-
plex user interface. How to avoid this problem depends
on the application space. SCoopFS attaches some
properties to the communication channel and others to
the sharing relationship, as well as eliminating some
choices. These design decisions limit the user’s options
in ways that make sense for the application domain.

An interface that lets the user specify dozens of actions
on each of millions of objects will necessarily be com-
plex. Following the guidelines presented here reduces
complexity by not interrupting the user’s work to make
policy decisions.
Related work
There are numerous guidelines for designing for usabil-
ity, e.g., [6], but that work does not mention including
the policy decisions in the interaction design. Other

work, e.g., [1], makes interruptions of the user’s work
less onerous, while our goal is to avoid those interrup-
tions entirely. A key goal of Chameleon [12] is not to
“interfere too much with the primary task” nor “intrude
on the ordinary activities that people want to perform.”
Our principles go beyond those goals by attempting to
avoid any interference with the user’s primary task.

Many systems don’t support rich sharing. A spouse
can’t get to the employee’s electronic pay stub because
it’s behind the company firewall (cross-domain). Often,
managers are forced to share their Windows domain
credentials with those who take care of minor budget-
ing and personnel matters (attenuated). The imple-
mentation of simple service chaining done for the US
Navy can achieve either the desired functionality
(chained) or the required security (composable), but
not both at the same time [10]. Microsoft Live Mesh
[14] only fully supports two of the six aspects (dy-
namic, cross-domain).

Conclusion
We didn’t start out by dreaming up a set of principles
and building tools using them. Instead, we built tools
and discovered that we weren’t bothering our users.
The articulation of the principles came from asking our-
selves how we did it, a form of post-hoc synthesis [2].

The primary contribution of this paper is to show that
making policy decisions explicitly controllable objects
makes it possible to give the user the desired control
without needing to leave the task at hand. We are now
applying these principles as we build prototypes, such
as a secure shell that supports rich sharing, so that we
have enough applications to study the implications of
making security invisible. The danger is illustrated by
the user who asked how to turn on security, which led

CHI 2010: Work-in-Progress (Spotlight on Posters Days 1 & 2) April 10–15, 2010, Atlanta, GA, USA

3251

us to ask, “Will users accept an application that is se-
cure if they can’t `see` the security?”

Acknowledgements
We thank Jhilmil Jain and April Mitchell for help in writ-
ing of this paper and the referees of an earlier version
for their guidance.

Citations
[1] Cao, X. and Iverson, L. Intentional access man-
agement: making access control usable for end-users.
Proc. SOUPS’06 (2006)

[2] Cockton, G. Getting There: Six Meta-Principles and
Interaction Design. CHI 2009, Boston, MA. (2009)

[3] Cranor, L. F. and Garfinkel, S. Security and Usabil-
ity: Designing Secure Systems That People Can Use.
Sebastopol, CA: O'Reilly Media, Inc., (2005)

[4] Dennis, J. B. and Van Horn, E. C. 1966. Program-
ming semantics for multiprogrammed computa-
tions. Comm. ACM 9, 3, pp. 143-155 (1966).

[5] Edwards, W. K., Poole, E. S., and Stoll, J. 2008.
Security automation considered harmful? Proc. NSPW
'07, pp. 33-42

[6] Gould, J. and Lewis, C. Designing for Usability: Key
Principles and What Designers Think. CACM, 28(3),
300-311, (1985)

[7] Hardy, N., “The Confused Deputy”, Operating Sys-
tems Reviews, 22, #4, 1988

[8] Hewlett-Packard Company,
http://www.hp.com/halo/introducing.html

[9] Hewlett-Packard Company, Intel, Yahoo!, Open
Cirrus, https://opencirrus.org/

[10] Karp, A. H. and Li, J. Solving the Transitive Access
Problem for the Services Oriented Architecture, HP Labs

Technical Report, HPL-2008-204R1 (2008), accepted
for ARES 2010

[11] Karp, A. H., Stiegler, M., Close, T., Not One Click
for Security, HP Labs Tech Report, HPL-2009-53 (2009)

[12] Long, C. A. and Moskowitz, C. Simple Desktop Se-
curity with Chameleon. In [3] pp. 335-356.

[13] Maxion, R. A., and Reeder, R. W. Improving user-
interface dependability through mitigation of human
error. Int. J. of Human-Computer Studies, vol. 63,
2005, pp. 25-50

[14] Microsoft Corp. What’s inside Live Mesh?
https://www.mesh.com

[15] Mitchell, A. S. and Karp, A. H. Improving Usability
by Adding Security to a Video Conferencing Collabora-
tion System, LNCS, #4886, pp. 378-382, 2008.

[16] Moromisato, G., Boyd, P., and Asthagiri, N. Achiev-
ing Usable Security in Groove. In [3] pp. 623-636.

[17] Reeder, R. W., Bauer, L., Cranor, L. F., Reiter, M.
K., Bacon, K., How, K., and Strong, H. 2008. Expand-
able grids for visualizing and authoring computer secu-
rity policies. In Proc. CHI '08. pp. 1473-1482, 2008.

[18] Saltzer, J. H and Schroeder, M. D. The Protection of
Information in Computer Systems. Comm. ACM 17, 7,
1974.

[19] Stiegler, M. A Capability Based Client: The DarpaB-
rowser. http://www.combex.com/papers/darpa-
report/darpaBrowserFinalReport.pdf (2002)

[20] Stiegler, M. Rich Sharing for the Web. HP Labs
Technical Report, HPL-2009-169 (2009)

[21] Yee, Ka-Ping. "Guidelines and Strategies for Secure
Interaction Design." In [3] pp. 247-273

CHI 2010: Work-in-Progress (Spotlight on Posters Days 1 & 2) April 10–15, 2010, Atlanta, GA, USA

3252

