

Behind the Scenes of Google Maps
Navigation: Enabling actionable
user feedback at scale

Abstract
This case study describes an Android-based feedback
mechanism, created to gain structured input on
prototypes of Google Maps Navigation, a mobile GPS
navigation system, during real-world usage. We note
the challenges faced, common to many mobile
projects, and how we addressed them. We describe
the user flow for submitting feedback; the resulting
feedback report from the team's perspective; our
triaging process for the high volume of incoming data;
and the results & benefits gleaned from using this
system. Learnings and recommendations are
provided, to aid mobile teams who may be interested
in developing a similar system for their working
prototype, particularly if real-world testing is required.

Keywords
mobile research, research methods, research tools,
GPS, in-vehicle navigation, in-vehicle information
systems

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g.,
HCI): User Interfaces - Evaluation/methodology,
Voice I/O, Prototyping, User-centered design

General Terms
Design, Human Factors

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

Yelena Nakhimovsky

Google, Inc.

1600 Amphitheatre Parkway

Mountain View, CA 94043 USA

yelenan@google.com

Andrew T. Miller

Google, Inc.

631 N. 34th Street

Seattle, WA 98103 USA

atmiller@google.com

Tom Dimopoulos

Google, Inc.

1600 Amphitheatre Parkway

Mountain View, CA 94043 USA

tdimop@google.com

Michael Siliski

Google, Inc.

1600 Amphitheatre Parkway

Mountain View, CA 94043 USA

msiliski@google.com

CHI 2010: Work-in-Progress (Spotlight on Posters Days 1 & 2) April 12–13, 2010, Atlanta, GA, USA

3763

Introduction
This poster describes a user feedback mechanism
developed for use with Google Maps Navigation, a GPS
navigation system meant for in-car use. The
mechanism allowed for collecting actionable user
feedback at scale – that is, such that it’s manageable
even when there’s a high volume of feedback – while
addressing challenges common to many mobile
projects. The tool was used during internal testing, and
was removed from the product before its public launch.

Aided by this feedback mechanism, during the
development process we were able to identify and
organize hundreds of reported issues, each
accompanied by rich contextual information resulting
from real-world usage. Here we discuss the challenges
addressed, the design, and the results of using the
feedback mechanism during development of this mobile
product. This work serves as one model for researchers
and practitioners to consider, as they develop any
mobile product which requires user feedback in real-
world settings.

Intended audience of this work
We expect this work to be of interest to mobile project
teams with a working prototype, who want structured
user feedback, particularly during real-world testing. In
our case, the design and creation of the tool involved a
user experience researcher, product manager,
consumer support specialist, and software engineers.

Goals for gathering user feedback
Once the team was ready to put early versions of
Google Maps Navigation into internal volunteers’ hands,
there emerged a clear need for handling a high volume

of internal user feedback at once. There were several
key goals:

 Make it easy and safe for internal users to provide
feedback and bug reports during real-world testing;

 Gather timely and context-rich user feedback, in a
structured manner;

 Maximize actionable feedback;

 Make it easy to triage & prioritize incoming data, at
scale.

Challenges
First we had to acknowledge existing challenges, which
were a combination of diary-study and in-car research
issues:

 Safety. Safety concerns for people testing in-car
devices are well-documented (e.g., [6],[7]). We
determined that a simulator would not have given us
the data we needed for testing, which included GPS
readings, and application behavior in real-world
conditions (e.g. intermittent signal loss). Thus, we
needed to ensure that the internal volunteers
interested in trying the application would have a simple
way to give optional feedback - by pressing a unique
physical button (trackball) on the device. The feedback
mechanism was unobtrusive. If the user never
triggered it, the UI was never presented to them. Once
triggered, it was automated as much as possible (see
"What we did" section for details).

 User burden of documenting in-car feedback.
In early testing by the authors, we felt an impulse to
somehow document our feedback and context.
Scrawled in-situ notes proved difficult and time-

CHI 2010: Work-in-Progress (Spotlight on Posters Days 1 & 2) April 12–13, 2010, Atlanta, GA, USA

3764

consuming to create, to re-interpret at a later time,
and to share. Furthermore, safety considerations and
the inevitable cognitive load of any note-taking
motivated us to avoid this situation for users.

 Time-delayed feedback misses critical
details. The diary study method has known
challenges, including high burden for users and
difficulty recapturing their experiences and context
(addressed in e.g. [2][4][1][5]). Our solution made it
easy for a user to capture a data-rich "experience
buffer" (using an approach similar to [3]) with a
button-press, within the same moment of noticing the
issue, before returning to the primary task. Not only
did this free the user from any perceived need to
actively remember the details, but our system
preserved detailed context that, in some cases, was
application-centric and would have been imperceptible
to the user. Furthermore, attempts to reproduce
certain conditions post-hoc can be time-consuming,
and sometimes fruitless.

 Data analysis bottleneck. In considering
options for gathering user feedback, we became
concerned about the potential lag time between
detection of some widespread issue, and team
diagnosis/response. For example, one early idea
involved running a diary study employing observers
and/or audio recordings; but the analysis time would
not have been feasible in this case. Our triage process,
described below, created clear roles and expectations
for the product team members involved, and provided
immediate team visibility into the data. This allowed
the analysis to concurrently occur from different
perspectives (e.g. some could diagnose how a system
crash happened from logs, while others diagnosed a

source of user confusion from a screenshot and audio
clip), on a rolling basis.

What we did

In this section we describe how we employed the
feedback mechanism, how it worked from the user and
product team perspectives, and how we processed the
data to obtain our results.

Informed users about the feedback mechanism
We wanted to keep the feedback mechanism out of a
user's way until it was needed, thus there was no
explicit mention of it within the user interface (UI) of
the application. The 'feature' needed to be discovered
by other means. In announcements to interested
internal volunteers about the availability of the app for
testing, we consistently included a prominent section
called "Sending Feedback," with the simple message:
"Press the trackball on your Android device when you
see a problem." Judging by the volume and quality of
feedback received (see Results), this approach was
effective.

User flow for submitting feedback

1. Driver or passenger notices a problem with the
Navigation application, while it’s in use.

2. User triggers feedback mechanism (in our case, by
pressing the trackball).

3. Tooltip appears, “Saving event log and snapshot…”
(see Figure 1).

4. 15 second audio recording auto-starts (see Figure
2). User can optionally describe the issue or
context aloud. If s/he is too busy to notice/react,
recording auto-completes after 15 seconds and
feedback flow continues.

Figure 1. Prototype Navigation
application, showing “Saving event
log and snapshot…” tooltip, after
user has triggered the feedback
mechanism.

Figure 2. Fifteen second audio
recording auto-starts & auto-
completes, without requiring user
interaction.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 1 & 2) April 12–13, 2010, Atlanta, GA, USA

3765

5. Pre-populated Gmail compose window auto-opens
(see Figure 3). The user must act (i.e. tap “Send”
or “Discard”) to continue using the Navigation
feature, but ideally this step wouldn’t require user
action. The email is auto-populated with:

a. Attachments, three files: event-log (.xml),
screenshot (.png), audio clip (.3gp);

b. “To:” line: internal mailing list for bugs,
and the user’s internal email account;

c. “Subject” line: [Product name] Error
Report [current date & time];

d. Body of email: “Voice note attached. You
may add more comments now or in a
follow up email later.”

6. After email is submitted, tooltip appears, “Sending
message…” to give unobtrusive feedback that the
system is working.

7. User is returned to the Navigation application,
which is active and running without further user
action.

8. Later on, users had easy access & visibility into
their own feedback via email, which proved easy &
compelling to reply to, when there was additional

info to convey.

Resulting feedback report, from team’s perspective

The incoming data provided a more complete story of a
given user-reported problem, than self-reports alone.
Each feedback report was sent to a team-accessible
mailing list (with a copy to the user), for our triaging
process. Here is the role each attachment played:

 Screenshot: Gave quick insight into issues with
UI/rendering; limited burden on the Quality Assurance

team to reproduce errors, when the error was visually
evident.

 Audio note: Gave quick in-situ summary; tone of
voice was a good indicator of user's frustration level.

 Event log: Provided user activity stream for 250
events of buffered data -- in our case, about 2-5
minutes worth of usage -- up to the point where the
feedback mechanism was triggered. The destination
point as well as all recent location fixes were recorded
for feedback purposes. This way the route plan could
be recreated, and the recent maneuvers could be
replayed.

 System crash log (when applicable): Provided stack
traces, giving context into the application failure, for
debugging purposes.

Processing the incoming data

Based on the data received, each report was manually
evaluated by a designated leader, and unresolved
issues were logged in a bug database. As similar issues
clustered, the severity of each could be assessed by the
volume of duplicate reports. Beyond including the
original attachments in the bug report:

 Audio notes were manually transcribed, with
notable instances called out. Most voice notes
contained relevant information and context; if
clarification of comments was needed, the user was
contacted for follow-up.

 Event logs were compared and cross-referenced
across similar bugs, for quicker error-source
identification.

 System crash logs were reviewed and commented
upon in the bug report.

Figure 3. Pre-populated Gmail
compose window. User needs to tap
“Send,” but extra comments are
optional. Audio clip, screenshot, and
buffered event log are sent as
attachments to a team list for
processing, and to the user.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 1 & 2) April 12–13, 2010, Atlanta, GA, USA

3766

Reports were triaged as they were received, leading to
a more rapid turnaround time for fixes & updated builds
for internal release.

Results

After several months of use, approximately 1,100
feedback reports were submitted and analyzed through
this system. Approximately 200 bugs were filed and
prioritized.

Examples of key product improvements

 Improved timing of voice guidance;

 Stripped out superfluous instructions, lessening the

user's cognitive load;

 Improved detection of whether/when to reroute;

 Improved location model accuracy, i.e. determining
a user's most likely location based on imperfect GPS
signals;

 Improved application performance and stability.

More traditional qualitative methods (e.g. diary studies, in-
situ observations) would not have provided us with these
results, particularly within the given timeframe.

Benefits of this system

 Easier to reproduce bugs observed in the real-
world. With our Android development environment,
event logs could be replayed by starting navigation with
a different intent. In our case, a mock location
provider replaced the system location providers, and
the time-stamped location fixes in the event log could
be forwarded to the rest of the application. The ability

to replay an event log meant that bugs were much
easier to reproduce.

 Easier to verify bug fixes. After a bug fix was
submitted, it was easy to verify it was fixed by
replaying the relevant event logs.

 A picture is worth 1,000 words, and lots of
time. Screenshots proved to be much more helpful
than text descriptions when diagnosing UI issues.
Furthermore, the team didn't need to spend extra effort
explaining to users how to create them, and the users
weren’t asked to reproduce the situation or manually
create the screenshot.

 Users remembered the details. When the team
did need clarification, after reviewing the initial
feedback report, following up with users usually led to
unambiguous clarifications.

 Useful even when out-of-scope. When the
source of certain errors were outside the scope of the
Google Maps Navigation application itself, problem
descriptions and rich supporting data could be
packaged and sent to relevant product teams.

 More prepared for public launch. Non-technical
feedback and user behavior were invaluable in
preparing the team for the types of issues we'd see
upon launch, and in drafting targeted support content.

Additional learnings & recommendations

 Applying this feedback mechanism to working
prototypes immediately provides a mobile product team
with useful “hard evidence” as context for a given
reported issue. Anecdotally, our engineering team
reported it felt easier and faster to fix the issues raised.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 1 & 2) April 12–13, 2010, Atlanta, GA, USA

3767

 Reports often include details that would be difficult
or impossible for an end-user to perceive, or to
consider relevant – particularly while driving a car.

 Triggering the feedback mechanism with an
always-available action is highly effective. Ideally, the
action – in our case, the trackball-press – has no other
purpose within the prototype application. Otherwise,
we'd suggest using "long-press" as a trigger, since the
mechanism needn’t be highly discoverable. (See
"Informed users about feedback mechanism").

 The inclusion of screenshot and audio clip capture
are valuable investments of engineering time. UI issues
were reportedly easier & faster to diagnose than only
text descriptions.

 User experience research becomes more scalable,
when user-level data is captured and processed along
with the system-level data.

Acknowledgements
We gratefully acknowledge the many internal
volunteers, whose valuable feedback led to significant
product improvements. Thanks also to Clint Cope, for
his assistance with the before/after illustrations.

References
[1] Brandt, J., Weiss, N., and Klemmer, S. R. txt 4 l8r:
lowering the burden for diary studies under mobile
conditions. In CHI '07 Extended Abstracts on Human
Factors in Computing Systems (2007). CHI '07. ACM,
New York, NY, 2303-2308.
http://doi.acm.org/10.1145/1240866.1240998

[2] Froehlich, J., Chen, M. Y., Consolvo, S., Harrison,
B., and Landay, J. A. MyExperience: a system for in situ
tracing and capturing of user feedback on mobile
phones. In Proc. of the 5th int’l Conf. on Mobile
Systems, Applications and Services (2007). MobiSys

'07. ACM, New York, NY, 57-70.
http://doi.acm.org/10.1145/1247660.1247670

[3] Hayes, G. R., Truong, K. N., Abowd, G. D., and
Pering, T. Experience buffers: a socially appropriate,
selective archiving tool for evidence-based care. In CHI
'05 Extended Abstracts on Human Factors in Computing
Systems (2005). CHI '05. ACM, New York, NY, 1435-
1438. http://doi.acm.org/10.1145/1056808.1056935

[4] Nakhimovsky, Y., Eckles, D., and Riegelsberger, J.
Mobile user experience research: challenges, methods
& tools. In Proc. of the 27th int’l Conf. Extended
Abstracts on Human Factors in Computing Systems
(2009). CHI EA '09. ACM, New York, NY, 4795-4798.
http://doi.acm.org/10.1145/1520340.1520743

[5] Palen, L. and Salzman, M. Voice-mail diary studies
for naturalistic data capture under mobile conditions. In
Proc. of the 2002 ACM Conf. on Computer Supported
Cooperative Work (2002). CSCW '02. ACM, New York,
NY, 87-95. http://doi.acm.org/10.1145/587078.587092

[6] Rakotonirainy, A. and Steinhardt, D. In-vehicle
technology functional requirements for older drivers. In
Proc. of the 1st int’l Conf. on Automotive User
interfaces and interactive Vehicular Applications (2009).
AutomotiveUI '09. ACM, New York, NY, 27-33.
http://doi.acm.org/10.1145/1620509.1620515

[7] Weinberg, G. and Harsham, B. Developing a low-
cost driving simulator for the evaluation of in-vehicle
technologies. In Proc. of the 1st int’l Conf. on
Automotive User interfaces and interactive Vehicular
Applications (2009). AutomotiveUI '09. ACM, New York,
NY, 51-54.
http://doi.acm.org/10.1145/1620509.1620519

 “The new bug reporting
works beautifully. Literally a
joy to use.”

“The feedback mechanism
was brilliant and made
[giving feedback] that much
more frictionless and even
encouraged spontaneous
feature request comments.

Big kudos for putting lots of
thought even into something
that wasn't planned to
launch!”

- Unsolicited comments from
internal users

CHI 2010: Work-in-Progress (Spotlight on Posters Days 1 & 2) April 12–13, 2010, Atlanta, GA, USA

3768

