

Using Concept Maps to Evaluate
the Usability of APIs

Abstract
Application programming interfaces (APIs) are the
interfaces to existing code structures, such as widgets,
frameworks, or toolkits. Therefore, they very much do
have an impact on the quality of the resulting system.
So ensuring that developers can make the most out of
them is an important challenge. However standard
usability evaluation methods as known from HCI have
limitations in grasping the interaction between
developer and API – the GUI, which makes this
interaction obvious, is missing. In this paper we present
a longitudinal approach using concept maps and a
question diary to make this interaction visible and study
the usability of an API over time.

Keywords
API usability, longitudinal evaluation, concept maps.

ACM Classification Keywords
H5.2. [Information Interfaces and Presentation]: User
Interfaces.

General Terms
Experimentation, Human Factors.

Introduction
Developing a software system nowadays hardly means
programming everything from scratch. Instead,
developers can often rely on existing widgets,

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

Jens Gerken

Human-Computer Interaction Group,

University of Konstanz, Box D-73

78457 Konstanz, Germany

jens.gerken@uni-konstanz.de

Hans-Christian Jetter

Human-Computer Interaction Group,

University of Konstanz, Box D-73

78457 Konstanz, Germany

hans-christian.jetter@uni-konstanz.de

Harald Reiterer

Human-Computer Interaction Group,

University of Konstanz, Box D-73

78457 Konstanz, Germany

harald.reiterer@uni-konstanz.de

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

3937

frameworks, libraries, or software development toolkits
that provide existing code structure for reuse. To
access these, application programming interfaces are
provided (APIs) and while there may be many different
kinds of APIs they all serve the same purpose, as
Daughtry et al. [4] described it: “they each provide a
programmatic user-interface to a module of code”. As
with any kind of interface, some of them are more
usable than others and so in recent years, the study of
the usability of APIs has been emphasized by more and
more researchers [e.g. 4,5]. We can identify two main
goals in such studies. One is to analyze the usage of
APIs on a more general level in order to derive design
principles for the creation of new APIs or the
modification of existing ones. The second is to evaluate
the usability of one specific API, preferably during its
development process as part of a user-centered
iterative lifecycle. In this paper we will primarily focus
on the latter part by presenting a longitudinal
evaluation method that can be used to assess the
barriers developers come across when trying to use an
API as well as their evolution over time.

Challenges for the Evaluation of an API
Evaluating an API is quite different from standard
usability evaluation. The most important aspect is the
missing GUI, so using and interacting with an API is
much more subtle than using a standard software
application and therefore more difficult to observe and
analyze. Accordingly, it is not straight forward to define
wrong doings or errors during the observation of users
since there are many ways to reach a goal. From a
methodological point of view, the most common
approaches are lab based usability tests in combination
with thinking aloud. So for example Klemmer et al. [10]
presented such a usability study with seven participants

using the Papier-Mâché Toolkit for developing tangible
user interfaces. Participants were first introduced to the
toolkit and then were asked to complete three typical
tasks by using it. Thinking aloud as well as participants’
Java code was then used to analyze the usability of the
toolkit. In a similar way, Heer et al. [9] analyzed the
usability of their prefuse toolkit. An interesting
alteration of this approach was proposed by Beaton et
al. [2]. Participants first have to write in pseudo code
what they would expect in the API for a certain task
and then perform the real task using the API. Thereby,
one can better assess the mapping between the user’s
mental model and its matching with the real world.

Quantitative measurements in such studies often are
task-completion times [5,1], sometimes lines of codes
[10], or number of iteration steps needed [1]. While
these can help in comparing different APIs [5] they can
only indicate usability issues in a rather broad sense.
More detailed analysis of the think-aloud protocol and
video observation data help in identifying more hidden
usability issues. Nevertheless it is quite difficult to find
themes or clusters of usability problems. One possibility
is to use the approach taken by Clarke [3]. He used the
cognitive dimensions framework and adapted it to fit
the needs of API usability evaluation. By using this
framework, evaluators can cluster findings in the
different categories and by that get help in identifying
which higher level concept of the API might be
problematic. Ko et al. [11] on the other hand identified
six learning barriers of an API in a large field study
which can be again used to cluster qualitative data.
Identifying such learning barriers can be one step to
assess the threshold of an API, which basically means
how difficult it is to achieve certain outcomes with it, as
Myers defined it in their threshold and ceiling quality

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

3938

criteria [12]. The ceiling defines what is achievable with
an API. Common approaches to evaluate an API on this
matter are case studies that show a wide range of
possible systems [e.g. 9,10]. So while there is quite
some work regarding the analysis of such API usability
studies, we think that from a methodological point of
view, there is still room for improvement. Current
approaches seem to be insufficient to address two
major aspects: 1) since most studies are limited to one
or maybe a few hours of testing, tasks are rather
simple and most of the time “pre-defined”. More
complex or even “free” tasks, where developers can
use the API for own projects are seldom and difficult to
integrate in such study designs, although such tasks
would provide very valuable input regarding the
usability of an API in real world situations. 2) It seems
difficult to assess learning barriers or the threshold of
an API during such a cross-sectional study. One would
assume that barriers shift during longer usage times
and thresholds may be perceived differently after some
time. Both of these aspects can be addressed by using
a longitudinal study design, which basically gathers
data at more than one point in time [7], therefore
making it possible to integrate more complex tasks and
observe changes. In the following section we will
present the concept map method to address these
issues. It is based on a longitudinal field study design
and a visual representation of the API usage.

The concept map method
The foundation of our method is the concept map
approach: We observe pairs of developers during
regular sessions, in which they have to draw a map
which shows the relationship between the system they
are building and the API (see figure 1). To structure
this, participants are asked to label post-it notes and

place these on a large sheet of paper (see Figure 1).
This concept map thereby shows not only what parts of
the API the developers are using but also how they
think these parts work together. We rely on teams of
two persons, as so they have to discuss the design of
the map in group and talk aloud, giving valuable
insights into the understanding of the API. The
graphical representation of such a concept map makes
it much easier to track changes over time. To do so our
method asks participants to refine their map from
session to session by sticking new post-it notes above
existing ones or moving them around. So while it is
difficult for users to precisely answer the question “how
has your perception and use of the API changed during
the last week”, we argue that it is much easier to
change the visual representation of exactly that
question. The time frame for such a study obviously
depends on the project scope and the ceiling of the API,
but we suggest it to be at least several weeks to allow
the investigation of changes over time.

In order to be able to get a grasp of the experience
during the actual usage of the API we contemplate the
concept map with a remote data-gathering technique.
Based on the diary technique [13] and the question-
suggestion protocol which was introduced by Grossman
et al. [8] we use a questioning-diary. The diary allows
us to be able to get data from the users in their normal
work environment without them having the feeling of
being observed. We suggest giving participants the
feeling of being able to use the diary as a help line by
stating their problems in terms of questions. The
concept map sessions should then also include a
suggestion/feedback part where questions are
discussed and if possible answered by API experts/
designers. Thereby it is possible to analyze the API to a

Figure 1: Example for a concept map

and the setting in general after the

last session

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

3939

much deeper degree since we avoid the danger of
participants being stuck right at the beginning.
Implementing the diary can be done in many ways
while one of the easiest ones is to use a Wiki. This
provides the possibility for participants to not only state
questions but also update them over time if solutions
come along, again making it possible to track and
analyze changes. Both of these techniques allow for
further modifications and fine tuning. Therefore, what
we have presented so far should be seen as the
abstract representation of the method. In the next
section we will illustrate a concrete “implementation” of
this method in a case study which furthermore points
out the strengths and current weaknesses.

The ZOIL Case Study
Longitudinal studies in the field of HCI are still seldom
applied, although the awareness and the need for such
studies are constantly increasing. In order to establish
a common methodological basis for longitudinal
research in HCI Gerken & Reiterer [7] presented a
taxonomy, which basically shows the design space for a
longitudinal study. We will refer to this taxonomy for
structuring throughout this case study.

The ZOIL API
The Zoomable Object-Oriented Information Landscape
(ZOIL) API, which was developed by one of the
authors, provides access to the ZOIL framework, which
is deployed as a software framework written in
C#/XAML for .NET & Windows Presentation Foundation
(WPF). It provides programmers with an extensible
collection of classes covering a wide range of
functionality, e.g. ZUIs, client-server persistency, and
input device abstraction. Basically, it serves as a toolkit

for developing zoomable user interfaces in the context
of reality based interaction and surface computing [6].

Research Objective, Research & Data-gathering Design
Our primary research objective was the identification of
walls and barriers when using the API and how these
might change over time. In order to be able to have a
rather broad range of API usage we opted for a multiple
Case Study design, similar to the MILC approach [14].
We observed four groups of two persons each with
different projects. The goal was in all cases to create a
running high-fidelity prototype in the context of reality
based interaction and surface computing, for which the
ZOIL framework is meant for. So both, data and tasks
were not pre-defined by the researchers but defined by
the users themselves. This allowed us to observe the
API usage under real conditions without the bias pre-
defined tasks and data usually introduce into usability
studies of APIs. Our test-developers were students of a
lecture about visual information seeking systems. We
used a five week period in which we conducted four
regular concept map sessions on each Wednesday,
separately for each group. The diary allowed further-
more for event-based, on-the-spot waves of data-
gathering throughout the time frame.

Data-gathering Methods
We will provide some more details on the
implementation of our two data-gathering methods.
First regarding the concept map approach, we asked
our participants not only to place and link concepts but
also to rate them on a rating scale from 1 “I don’t like
this concept at all” to 7 “I really like this concept”.
Besides, they had to express their ratings by using
adjectives describing the concept, such as “neat” or
“inconvenient”. Again during each session we asked

Figure 2: The initial concept map

using the db4o backend for data

storage

Figure 3: The evolution of the concept

map, including an additional MySQL

database. The changes are made

explicit by crossing out earlier links

between the data source and the

db4o and introducing a link back from

the visualization to the db4o.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

3940

them to refine the ratings and the attributes they had
given, making it possible to track changes over time.
During the last session we gave our participants
additional concepts of the API and asked them to place
those within their map and to explain whether and how
they made use of them. This allowed us to further
elaborate their understanding of the API and the
underlying framework.

Data Analysis
Both, the diary and the concept map technique were
designed in a way to allow us to analyze changes in
qualitative data over time. The focus is on making
those changes visual and explicit, e.g. by asking the
users to refine the ratings and adjectives and refine the
structure of the concept map during each session. This
lead to drastic and easily perceivable changes, such as
concepts being shifted, removed, or renamed and
questions in the diary being resolved and marked as
such.

First Results & Outlook
In this section we illustrate the potential of the method
and also some observed shortcomings of the current
implementation.

The diary as a wiki still provided quite a barrier to use it
on a regular basis. This resulted in small problems
being not reported on the diary and sometimes the
status of larger problems did not get updated over the
course of the study, making it difficult to judge the
reliability of the entered data. We suggest using a less
obtrusive technique by integrating the diary directly
within the integrated development environment (IDE)
or the toolkit. An interesting approach could be the use
of a twitter based technology as a very low-obtrusive

and low level diary technique. Besides, our participants
had problems in finding the right words to describe
concepts of the API with adjectives. One possible
solution to this could be to provide adjectives in
advance, both negative and positive ones and then let
participants simply choose from this sample.

The Concept Maps proved to be very useful to visualize
the users’ mental model of the API. In some cases,
participants included deeper concepts of the underlying
ZOIL framework within their maps, suggesting that
they expected these still to be part of the API.
Furthermore the discussions between the group
members while creating the concept maps were
extremely helpful in understanding their understanding
and usage of the API. The analysis of the Concept Maps
over time provided tremendous insights. One example
is the database connection provided by the API, which
actually is not used for data-storage but for the
synchronization of the system on multiple screens. One
group had problems in understanding this issue so in
their first concept map, albeit having the need for data
storage they only included the db4o backend
connection provided by the API. In the second week
they realized that this won’t be sufficient and therefore
included an additional concept for a MySQL database
and used this in combination with the provided db4o
backend (see figure 2 & 3). An example for the
identification of a learning barrier is the usage of the
Model-View-ViewModel (MVVM) pattern provided by the
API (see figure 4). As it turned out, one group had
difficulties for weeks to integrate this and in the very
end came up with their own solution. However, the
concept maps showed (figure 5 & 6) that they ended up
with a very similar structure providing the basic
separation between view and model. So while the

Figure 4: A challenge for the design

of the ZOIL framework was to provide

a client-server-architecture for a

persistent and distributed ZUI, with

each client providing the user with an

individual view on the shared

workspace. For this reason, the ZOIL

framework uses the Model-View-

ViewModel Pattern (MVVM) to

provide a MVC-style separation

between the persistent data model of

an object and the non-persistent view

of the object in the zoomable

information landscape. Each object’s

model is shared via the server with all

others clients, but the corresponding

view is not shared and only resides

on the client-side.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

3941

MVVM pattern provides the necessary functionality, it
can be clearly ascribed with being a learning barrier of
the API. The question-diary still was useful for a
discussion trigger during the concept map sessions,
helping us to get more insight into specific problems.
The additional task which we integrated in the last
session that asked participants to place API concepts
within their respective maps also gave additional
insights into the thinking and level of comprehension of
the API.

Outlook
We presented a longitudinal approach to evaluate the
usability of an API. The method comprises a visual
concept map technique and a question-diary as main
data-gathering techniques with the focus on the ability
to track changes in a longitudinal design. While our first
results are promising, we will further refine and extend
the method and apply it to a larger and more
structured case study in order to be able to elaborate in
more detail on the potential benefits. One potential
design change will be a reduction of users’ degree of
freedom in creating the map to allow some additional
quantification of the results which might be easier to
grasp in some cases. We will also compare the
approach to traditional API usability testing approaches.

References
[1] Ballagas, R., Memon, F., Reiners, R., and Borchers,
J. iStuff mobile: rapidly prototyping new mobile phone
interfaces for ubiquitous computing. In Proc. CHI 2007,
ACM Press (2007), 1107-1116.

[2] Beaton, J. K., Myers, B. A., Stylos, J., Jeong, S.,
and Xie, Y. Usability evaluation for enterprise SOA APIs.
In Proc. of SDSOA '08. ACM Press (2008), 29-34.

[3] Clarke, S. Measuring API Usability. In Dr. Dobbs
Journal, May 2004, S6-S9.

[4] Daughtry, J.M., Farooq, U., Myers, B.A., Stylos, J.
API Usability: Report on Special Interest Group at
CHI. Software Engineering Notes July 09. ACM Press.

[5] Ellis, B., Stylos, J., and Myers, B.A. The Factory
Pattern in API Design: A Usability Evaluation. In Proc.
ICSE 2007. ACM Press. pp. 302-312.

[6] Gerken, J., Heilig, M., Jetter, H.-C., et al. Lessons
learned from the design and evaluation of visual
information-seeking systems. In International Journal
on Digital Libraries. 2009.

[7] Gerken, J. and Reiterer, H. Eine Taxonomie für
Längsschnittstudien in der MCI. In Proc. Mensch &
Computer 2009. Oldenbourg Verlag. 2009. English
summary/translation available here: http://hci.uni-
konstanz.de/elmuse/longitudinal_taxonomy.pdf

[8] Grossman, T., Fitzmaurice, G., and Attar, R. A
survey of software learnability: metrics, methodologies
and guidelines. In CHI '09. ACM.

[9] Heer, J., Card, S. K., and Landay, J. A. prefuse: a
toolkit for interactive information visualization, In Proc.
CHI 2005. ACM Press (2005), 421-430.

[10] Klemmer, S. R., Li, J., Lin, J., and Landay, J. A.
Papier-Mache: toolkit support for tangible input.
In Proc. CHI’04. ACM, New York, NY, 399-406.

[11] Ko, A. J., Myers, B. A., & Aung, H. H. Six learning
barriers in end-user programming systems. In Visual
Languages and Human Centric Computing, 2004 IEEE
Symposium on (2004), pp. 199-206.

[12] Myers, B., Hudson, S. E., and Pausch, R. Past,
present, and future of user interface software tools.
ACM Trans. Comput.-Hum. Interact. 7, 1 (2000), 3-28.

[13] Rieman, J. The diary study: A workplace-oriented
research tool to guide laboratory efforts. In Proc.
INTERCHI 1993, ACM.

[14] Shneiderman, B. and Plaisant, C. Strategies for
evaluating information visualization tools: multi-
dimensional in-depth long-term case studies. AVI 2006
Workshop BELIV '06. ACM. 2006

Figure 5: The original concept map

implementing the work around the

MVVM pattern

Figure 6: A schematic view of the

implementation. They implemented a

solution without a ViewModel, thereby

losing one of the key advantages of

the MVVM pattern – the abstraction

layer between C# and XAML code.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

3942

