

Interactive Diagram Layout

Abstract
We examine an approach for defining layout algorithms
for diagrams. Such an algorithm is specified on an
abstract level and may be applied to many kinds of
visual languages. It mainly allows for incremental
diagram drawing and attaches great importance on
mental map preservation. With the approach, it is
possible to combine graph drawing algorithms and
other layout algorithms. It is capable of defining layout
behavior for non-graph-like visual languages like Nassi-
Shneiderman diagrams or GUI forms as well as graph-
like visual languages such as class diagrams,
mindmaps, or business process models. In this paper,
we demonstrate that the combination of graph drawing
algorithms and other layout algorithms is meaningful
by presenting three visual language editors that have
been created by students.

Keywords
Graph drawing, visual languages, meta models

ACM Classification Keywords
H.5.2 [User Interfaces]: Interaction styles; D.2.2
[Design Tools and Techniques]: User interfaces

General Terms
Algorithms, design

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

Sonja Maier
Institute for Software Technology

Computer Science Department

Universität der Bundeswehr München

85577 Neubiberg, Germany

sonja.maier@unibw.de

Mark Minas
Institute for Software Technology

Computer Science Department

Universität der Bundeswehr München

85577 Neubiberg, Germany

mark.minas@unibw.de

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4111

Introduction
In general, we distinguish two categories of visual
languages: graph-like and non-graph-like visual
languages. Many visual languages, however, fit into
both categories. For instance, some parts of class
diagrams show a graph-like structure, e.g., classes
together with associations. Other parts of class
diagrams show a non-graph-like structure, e.g., lists of
attributes or the nesting of packages. Graph drawing
algorithms (GA) are specifically tailored to graph-like
structures, and rule-based layout algorithms (RA) [2], a
variation of constraint-based layout algorithms, are
usually used for non-graph-like structures. We present
an approach that brings together these drawing
strategies, and, hence, the possibilities of both
categories are combined.

The goals of our approach are the specification of
layout on an abstract level, and the possibility of
reusing already defined drawing behavior. Besides, the
presented approach is tailored to the interactive nature
of diagram editors: the defined layout algorithms run
continuously and improve the layout in response to
user interaction in real-time. Predictable results that
preserve the mental map [4] are favored, instead of
high quality layout derived from a standard layout
algorithm.

User Study
What kind of layout behavior should be defined via
graph drawing algorithms? What kind of layout
behavior should be defined via rule-based layout
algorithms? To answer these questions, we performed a
user study. We asked 7 groups of students, consisting
of 2-3 students each, to use DiaMeta [3], an editor
generation framework. First, each group had to create

a visual language editor to get familiar with the system.
Afterwards, each group had to define a layout algorithm
for the visual language. They were asked to implement
a standard layout algorithm following the descriptions
of [7] first. Afterwards, they had to adapt the algorithm
to the special requirements of their visual language
editor. As a result, some layout behavior was built into
the GAs themselves, while other layout behavior was
defined outside the GAs. As expected, different groups
defined similar layout modules. In addition, different
groups defined the same layout behavior outside GAs
as other groups. To show some of the students’ design
decisions, three representative examples are described
in the following: tree drawing applied to mindmaps,
layered drawing applied to business process models
(BPMs), and edge routing applied to class diagrams. For
each layout algorithm, we list the layout behavior that
was defined via GAs and the layout behavior that was
defined outside the GAs.

Tree Drawing applied to Mindmaps
The tree drawing algorithm was applied to the obvious
tree structure of a mindmap (Fig. 1). The students
decided to implement a circular and a layered layout
strategy.

Figure 1. Mindmaps: Circular and layered layout strategy.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4112

 Layout behavior defined via GAs: Nodes should
stay near the position where the user has placed
them. Besides, the different node shapes (e.g., a
cloud) and sizes need to to be considered.

 Layout behavior defined outside GAs: Lists are
required to remain attached to their owner nodes,
and the order of list entries should be preserved.
Links between different branches need to remain
attached, and must be routed without crossing
other nodes.

Layered Drawing applied to BPMs
The layered drawing algorithm was applied to business
process models (Fig. 2). Here, flow objects serve as
nodes and connecting objects as edges. The start
activity is used as source and the end activity as target
of an edge. To alter the drawing, the students have
provided many options, e.g., the horizontal or vertical
alignment of components.

Figure 2. Business Process Models: Visual language editor.

 Layout behavior defined via GAs: Changing the
diagram should not result in flow objects being
moved to a (completely) different layer.

 Layout behavior defined outside GAs: To cope with
nodes of different sizes, a special edge router is
used. Swimlanes allow for node nesting, and the
layouter should preserve the order of them.

Edge Routing applied to Class Diagrams
Edge routers are a somewhat different category of
drawing algorithms, as node positions are fixed. The
students applied them to class diagrams (Fig. 3). They
have implemented two edge routers, which may be
combined.

 Layout behavior defined outside GAs: Nodes should
not overlap. Besides, attributes need to be aligned
and the nesting of packages and classes needs to
be preserved.

Figure 3. Class diagrams: The same class diagram before and

after moving class Person.

Edge Follower

The first implemented strategy is an edge follower that
makes sure that edges follow a component and exactly
start at the contour of this component.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4113

 Layout behavior defined via GAs: For class
diagrams, edges need to follow classes, which are
visualized as rectangles, or packages, whose shape
is a bit more complex.

Edge Positioner
The second implemented strategy is an edge positioner,
whose purpose is to route edges, e.g., to introduce
bend points. The algorithm especially avoids crossing of
nodes. For class diagrams, the edge positioner is
applied to associations and generalizations.

 Layout behavior defined via GAs: Here again, the
shape of nodes is important. To achieve a more
pleasant result, the bounding box of nodes is used
as the basis of the computation. Other important
requirements are that edge crossings are avoided
and that two edges do not start or end at the same
point.

Summary
Each drawing algorithm is either called explicitly by
clicking a button, or it is called automatically after each
diagram change. The students who have implemented
the algorithms tree drawing and layered drawing have
chosen the first option, whereas the students who have
implemented the edge routing algorithms have
provided both options. This was reasonable as the edge
routers perform no major structural changes.

Some requirements have been solved by changing the
GAs, others have been solved outside the GAs. Most
students decided to define the following layout behavior
outside the GAs: preserving the size of nodes, the
containment of nodes and the order of nodes (lists). To
define such layout behavior, it is reasonable to use RAs.

Layout Patterns
Layout patterns combine GAs and RAs. They allow for
defining the layout on an abstract level and for reusing
these layout algorithms.

Execution of a Layout Algorithm
When the editor user moves a class, or more generally,
changes the diagram, the layout engine is called and
the diagram is updated. In our example, the user has
moved class Person right (Fig. 3). During movement,
the position of the attributes name and age are updated,
the package university is resized, and the
generalization follows the class Person. Each of these

changes is performed by a different layout pattern and
hence by a different layout algorithm.

Specification of Layout Patterns
Each layout pattern encapsulates certain layout
behavior. It is based on a language-independant, but
pattern-specific meta model (PMM). This way, reuse of
layout behavior is possible.

The term pattern is already known in the context of
layout specification [6] based on tree grammars, while
we use meta models.

Internally, a diagram is represented by an instance of a
language-specific meta model (LMM). In order to apply
a layout pattern to a certain visual language, i.e., in
order to instantiate the pattern, a mapping between the
PMM and the LMM needs to be defined.

A layout pattern consists of a meta model MM and a
layout algorithm Alg, for instance a GA or a RA. When
instantiating a layout pattern, a list of options opt may
be provided. Besides, a history hist is created, which
stores the previous layout of the diagram, the changes

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4114

done by the user, and the changes already performed
by other layout patterns.

Meta Model(s) for Graph Drawing Algorithms
To allow for reuse, GAs are integrated as certain
patterns, and hence, are based on a pattern-specific
meta model GPMM (graph pattern meta model). The
GPMM is shown in Fig. 4: A graph consists of several
components. A component is either an edge or a node.
An edge has up to three labels and connects two nodes.

Meta Models for Rule-based Layout Algorithms
The meta models SizePMM, ListPMM and
ContainmentPMM, on which the patterns Size, List and
Containment are based on, are shown in Fig. 6. These
patterns are responsible for preserving the correct size,
alignment and nesting of components. The meta model
SizePMM consists of a SizeElem, which stands for the

resizable component. The meta model ListPMM
describes a list in terms of many ListElems. The meta
model ContainmentPMM consists of a Container which
may contain one or more Components. A Component is
either a ContainerElem or a Container.

Mappings
A pattern-specific meta model is an abstraction of the
situation in the LMM, meaning that concrete classes in
the PMM correspond to classes in the LMM. Usually a
pattern is not exactly represented in the meta model of
a diagram language. Instead, some variation can be
found. Hence, the correspondence between LMM and
PMM must be defined for each pattern. The mapping
between the instances of different meta models can be
seen in Fig. 6. Here, instances of the meta models of
Fig. 4 and Fig. 5 are ListPM, SizePM, ContainmentPM
and GPM. The dashed arrows indicate the

transformations between different models. Every ellipse
connected with a rectangle forms a pattern instance,
e.g., List together with ListPM, or Edge Follower
together with GPM.

Figure 6. Correlation of diagram, LM, PMs and patterns.

Graph Drawing Algorithms
A GA gets as input an instance IGPMM of the meta model
GPMM, the list of options opt and the history hist. The
algorithm is either self-coded or provided by a graph
drawing library. The GAs edge router, edge follower,
tree layout and layered layout all operate on the same
GPMM (Fig. 6). GAs are usually quite complex, and
performance is crucial in an interactive environment.
Hence, it is reasonable to implement them, not to
define them on an abstract level.

Rule-Based Layout Algorithms
A RA gets as input an instance IMM of the corresponding
meta model MM, a list of options opt, and a history hist.
The specification of layout rules as well as strategies is
based on the corresponding PMM (Fig. 5). The RAs
Size, List and Containment all operate on different
meta models. RAs are a variation of constraint-based

Figure 4. Graph layout meta model.

Figure 5. PMM for the patterns
Size, List and Containment.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4115

layout algorithms, and have been introduced in [2].
Constraint-based layout algorithms are used in many
tools for drawing graphs, e.g., in GLIDE [5] or Dunnart
[1]. In contrast to standard constraint-based
algorithms, a more predictable layout behavior may be
defined via RAs: When the layout engine is called,
roughly speaking, several layout rules are applied to
different parts of the diagram and predictably update
the values of certain attributes.

Combination of Layout Patterns
Different layout patterns are combined via the
application control, a language-specific control
program. It decides in which order different patterns
are applied and it instantiates each pattern.

Conclusions
In this paper, we have examined an approach for
defining layout algorithms for diagrams. With the
approach, it is possible to combine graph drawing
algorithms and rule-based layout algorithms. The
approach is capable of defining layout behavior for
various visual languages: non-graph-like visual
languages like Nassi-Shneiderman diagrams or GUI
forms and graph-like visual languages, such as class
diagrams, mindmaps or business process models.

We have demonstrated that the combination of graph
drawing algorithms and rule-based algorithms is
meaningful by outlining three visual language editors
that have been created by students. Besides, the reuse
of certain layout behavior is motivated. As a next step,
we plan to enhance the framework to allow for the easy
specification of layout behavior for a visual language
editor. Then, we will ask students to define both, GAs
as well as RAs, using the framework.

Our overall goal is to create a platform on which new
language-specific layout algorithms that are tailored to
interactive diagram drawing may be created and
tested.

References
[1] Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: A
constraint-based network diagram authoring tool. In:
Graph Drawing: 16th Intl. Symp. (GD’08). Volume
5417 of LNCS, Springer-Verlag (2009) 420–431.

[2] Maier, S., Mazanek, S., Minas, M.: Visual
specification of layout. In: Graph Drawing: 16th Intl.
Symp. (GD’08). Volume 5417 of LNCS, Springer-Verlag
(2009) 443–444.

[3] Minas, M.: Generating meta-model-based freehand
editors. In: Proc. of the 3rd Intl. Workshop on Graph
Based Tools (GraBaTs’06). Volume 1 of ECEASST.
(2006).

[4] Purchase, H.C., Samra, A.: Extremes are better:
Investigating mental map preservation in dynamic
graphs. In: Proc. of the 5th Intl. Conference on
Diagrammatic Representation and Inference (Diagrams
’08), Springer-Verlag (2008) 60–73.

[5] Ryall, K., Marks, J., Shieber, S.: An interactive
constraint-based system for drawing graphs. In: Proc.
of the 10th ACM Symp. on User Interface Software and
Technology (UIST’97), ACM (1997) 97–104.

[6] Schmidt, C., Kastens, U.: Implementation of visual
languages using pattern-based specifications. Software:
Practice and Experience 33(15) (2003) 1471–1505.

[7] di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.:
Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice Hall (1998).

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4116

