
Graphemes: Self-Organizing Shape-based 
Clustered Structures for Network Visualisations

Abstract
Network visualisations use clustering approaches to 
simplify the presentation of complex graph structures. 
We present a novel application of clustering algorithms, 
which controls the visual arrangement of the vertices in  
a cluster to explicitly encode information about that 
cluster. Our technique arranges parts of the graph into 
symbolic shapes, depending on the relative size of each 
cluster. Early results suggest that this layout 
augmentation helps viewers make sense of a graph’s 
scale and number of elements, while facilitating recall 
of graph features, and increasing stability in dynamic 
graph scenarios.
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Introduction
Visually presenting complex network structures is a 
challenging area, and has resulted in a whole 
community of practitioners focused on graph layout 
algorithms [9]. Of the many successful approaches that 

Ross Shannon
Systems Research Group,
School of Computer Science & 
Informatics,
UCD Dublin,
Ireland
ross.shannon@ucd.ie

Aaron Quigley
HITLab Australia,
School of Computing and 
Information Systems,
University of Tasmania,
Australia
aaron.quigley@utas.edu.au 

Paddy Nixon
Systems Research Group,
School of Computer Science & 
Informatics,
UCD Dublin,
Ireland
paddy.nixon@ucd.ie

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM  978-1-60558-930-5/10/04.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4195



have emerged, two in particular have many varied 
uses: force-directed layout algorithms [5], and graph 
clustering [13].

Force-directed layouts apply a set of attractive and 
repulsive forces between the vertices and edges of a 
graph, naturally generating a layout over time as a 
stochastic process models the interacting forces. 
Dynamically-changing graphs introduce challenges for 
the viewer in effectively maintaining their internal 
“mental model” of the structure under study [1], but 
force-directed approaches aid the viewer by smoothly 
interpolating between iterative versions of the layout, 
helping to preserve the mental model [7]. 

Clustering techniques have been used in machine 
learning to find commonality in large corpuses of data. 
In the visualisation of tree and network structures, 
clustering is intuitively applied to groups of vertices 
using graph-theoretic properties such as shortest path 
algorithms [3]. Vertices can be visually drawn close 
together or otherwise associated in the view, or, if the 
view is crowded or display space is limited, some 
vertices may be elided (removed from view) to simplify 
the drawing and call attention to key structural 
properties.

Visual clustering and elision in 2D or 3D will often take 
the form of multiple vertices in the original network 
being represented as one, generally larger vertex in the  
resulting information space. The visualisation designer 
sacrifices representational fidelity for increased 
effective readability of the data that is presented. 
Further levels of visual abstraction may be attained if 
the desired complexity of the graph drawing has not 
been reached.

While the interests of the graph drawing community 
have become focused on ever more large and complex 
graph structures, it is important to remember that the 
comparatively small graphs that were visualised at the 
inception of the discipline are still very much relevant 
today. These graphs represent networks on a human 
scale: though the overall size of an online social 
network may be in the millions, the part of it that is 
relevant to a single user—that is, their own network of 
friends and acquaintances—is made up of roughly 150 
people [4]. Graphs of only a few dozen vertices and 
edges like Figure 1 are found in computer interfaces, 
videogame menus and information software. There still 
exist opportunities to improve understanding, analysis 
and recall of graphs at this scale.

This article presents a novel technique applicable to 
small or clustered graphs which is designed to improve 
recall and understanding by exploiting the human 
brain’s affinity for visual pattern-matching. The 
following section introduces the theory that has led to 
this approach. Following this are some implementation 
details and a discussion of early findings.

Symbolic Shapes
A “grapheme”, in written languages, is a single 
character such as an alphabetic letter or number. 
Graphemes are the fundamental building blocks of 
meaning, which are combined together to form more 
complex models.

Each of us can distinguish a large set of visual forms 
and shapes quite easily, from the character sets used in 
languages we are each familiar with, to the almost 
universal set of shapes we know as squares, circles, 
triangles and so on.

Figure 1. Even relatively small graphs can be 
challenging to analyse, navigate and 
manipulate. This graph of a social network 
has 34 vertices and 76 edges [14].
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Memory-supporting techniques such as the visual mind 
map seen in Figure 2 and utilised by students learning 
about a topic, recommend the use of color, position, 
flowing lines and iconography to enhance ease of recall 
[2]. The brain responds strongly to spatial layout in 
particular, which has significant primacy in recall 
performance [11].

Our grapheme technique is the combination of some of 
the benefits of both force-directed layouts and 
clustering algorithms to augment the layout that results  
from the layout algorithm alone. We apply customised 
sub-layouts to certain parts of the graph, arranging 
them into geometric shapes, converting unstructured 
clusters of vertices into nominal landmarks in the 
overall structure.

Figure 2. A mind map for “Time management”, showing rich 
use of icons, color and spatial layout, all of which make the 
salient parts of the drawing easier to recall after viewing.1

The graph is first partitioned into subsets using an 
edge-betweenness metric for detecting communities in 
complex networks [8]. This results in a list of subsets of 
the graph. In a person’s social network these might be 
work colleagues, family, sporting friends—communities 
that are intra-connected but have few links between 
these subsets.

Next, we map the size of the clusters that have been 
detected to a set of five primitive geometric shapes 
(listed in Figure 3). Depending on the relative number 
of vertices in each subset, an appropriate shape from 
the range is chosen.

Shape Template Wireframes
Though further common shapes are available for use—
such as arrows and more eccentric ellipses, hexagons 
etc.—at low resolutions they become difficult to 
distinguish. The five shapes we currently use were 
chosen for their familiarity and their horizontal 
symmetry; but also because they each can be easily 
broken down into a set of key vertex positions. If we 
have more vertices than we need key points, the 
shapes simply increase in fidelity as we position further 
vertices on the lines between two required key 
positions (this effect can be seen in the blue rectilinear 
cluster in Figure 4). 

The complexity and number of vertices needed to 
represent the shapes increases as we go left to right in 
Figure 3, from the triangle, which needs only three 
points at minimum, through the square, circle, five-
point star and heart, which needs twelve to be 
reasonably represented. This gives us a range to work 
with so that clusters of different sizes will be drawn 
using different shape templates.
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The benefit of primitive shapes is, we hypothesise, that 
the resulting arrangements can be remembered 
symbolically, and the relative positions are more easily 
recalled, similar to how a star-gazer can remember the 
relative positions of abstract patterns in the 
constellations of the night sky.

Implementation
A prototype implementation has been developed using 
JUNG, a Java tool for processing and visualising 
network data [12]. The figures in this article have used 
the Zachary’s karate club data set which is well-known 
in social sciences [14]. Figure 4 shows the graph drawn 
with the built-in Fruchterman-Rheingold layout 
algorithm and colored to show the four main clusters 
(green, red, blue and orange). One yellow vertex is not 
part of any cluster.

Figure 5 shows the final layout. First, the graph is 
modified to use a force-directed layout, with starting 
positions derived from the vertices’ positions from 
Figure 4. When assigning vertices to a shape, the key 
positions (from the shape template) are filled first. 
Vertices are supplied with forces which will eventually 
move them into position (for example, the vertices on 
opposite corners of the square template will repel each 
other strongly, but are relatively attracted to the other 
two corners). If any vertices are left over, they are 
positioned on a line between two key positions. The 
initial implementation places the additional vertex 
between two random key positions. 

The visualisation tool gives us the ability to selectively 
loosen and lengthen the edges between vertices in 
different subsets programmatically (e.g., the edge 
between a vertex in the blue subset and one in the 
orange subset in Figure 4). These inter-subset edges 
are rendered more lightly in both figures. At the same 
time we can stiffen the springs between vertices that 
are in the same subset, fixing them in place relative to 
each other. This gives an effect not dissimilar to the 
result of using virtual vertices to exert forces in the 
layout [6] (though that approach is more robust). 
Slightly different parameters for the clustering 
algorithm have resulted in a second unclustered vertex 
in this figure.

Some artefacts can be noted in the figures. In 
particular, the triangle shape which should be in effect 
in the light green subset in the top left is misshapen 
due to too much force being applied between two 
vertices at one of its corners. The heart shape is also 
not ideal.

Figure 3. A range of representations of 
common geometric shapes. The top row 
shows a triangle, square, circle, star and 
heart respectively from left-to-right. The 
second row shows the key vertex 
positions making up each of these 
shapes in our system. Finally, the third 
line shows these shapes in their vertex 
representation with no guidelines. Each 
shape remains distinguishable even at 
this low resolution.
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Discussion
This technique was developed with the aim of aiding 
two cognitive processes that are known to be put to the  
test when analysing a complex network structure: the 
appreciation of the size of a graph and an estimation of 
the number of vertices and number of clusters; and the  
memory of the arrangement of the graph in general, 
and the relative positions of clusters of vertices in 
particular, once the graph can no longer be consulted.

The five shape templates can be arranged ordinally in 
terms of how many nodes they are made up of. The 
system was designed this way with a view to helping 
viewers make better estimates of the size of the 
clusters, and of the whole graph. If our hypothesis is 
correct, shapes provide a way of counting without 
counting, using only pattern analysis to estimate 
figures without counting any individual vertices.

Since the human short term memory has only a finite 
capacity for storing stimuli [10], replacing amorphous 
clouds of vertices with organised arrangements of 
vertices that can be remembered as a single symbolic 
unit would seem to be a promising approach.

In the case of dynamic graphs, this technique can be 
used to call attention to significant events, like vertices 
being removed from a cluster, since the algorithm can 
be run again, resulting in one shape transforming into 
another after a significant change to the graph 
structure. Likewise, stable areas of the graph structure 
remain stable in the view.

(above) Figure 4. The same graph as 
seen in Figure 1, drawn using a 
Fruchterman-Rheingold layout algorithm. 
This time, the vertices have been colored 
based on the results of an 
edge-betweenness measure, 
which makes it clear which 
vertices are most closely 
connected to the others 
nearby. 

(below) Figure 5. After the partitioning process, 
each subset is assigned a shape template based on 
their relative sizes, and the forces between those 
vertices are manipulated so that they take on 
these specialized layouts. Vertex positions have 
been fixed before the layout algorithm was 
finished, to avoid the clusters drifting apart.
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Conclusions
We have presented work in progress on graphemes, a 
novel application of visual clustering applied to graph 
layouts. This system reduces complex graphs into sets 
of nodes arranged to form various simple geometric 
shapes, which is aimed to make it easy to remember 
the layout of a graph drawing, and also to make 
accurate estimates as to its overall size.

A large-scale study of the relative abilities of viewers to 
successfully estimate the number of nodes in the graph 
and recall the layout of clusters is ongoing. Early 
results suggest that users indeed can more easily recall 
the layout of a graph at a high level of abstraction by 
remembering the relative positions of the shapes. 
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Outstanding Issues
The interplay between laying out 
clusters of vertices in these shapes 
while they are also representing other 
multivariate properties (via their color 
or size, for example) is still unknown.

It is unclear if this type of approach to 
adding landmarks to a graph can scale 
up to hundreds or thousands of nodes. 
Nested layouts, with different layout 
algorithms being applied at different 
levels of abstraction could provide a 
way to use these techniques at low 
levels of a much larger network.

The technique does not perform well in 
graphs with very sparse clusters, as 
there are not enough vertices to make 
the basic shapes. The graphs which 
seem to perform best have a moderate 
variability in their cluster size, and 
many clusters with eight vertices or 
more.

The original goal of making the nodes 
completely “self-organising” as in 
autonomic networks has not yet been 
realised. The hard-coding of shape 
templates is a temporary solution until 
more sophisticated behaviour can be 
achieved.
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