
Graphemes: Self-Organizing Shape-based
Clustered Structures for Network Visualisations

Abstract
Network visualisations use clustering approaches to
simplify the presentation of complex graph structures.
We present a novel application of clustering algorithms,
which controls the visual arrangement of the vertices in
a cluster to explicitly encode information about that
cluster. Our technique arranges parts of the graph into
symbolic shapes, depending on the relative size of each
cluster. Early results suggest that this layout
augmentation helps viewers make sense of a graph’s
scale and number of elements, while facilitating recall
of graph features, and increasing stability in dynamic
graph scenarios.

Keywords
Dynamic graphs, graph drawing, visual memory.

ACM Classification Keywords
H.5.0. Information interfaces and presentation (e.g.,
HCI): General.

General Terms
Human Factors, Theory.

Introduction
Visually presenting complex network structures is a
challenging area, and has resulted in a whole
community of practitioners focused on graph layout
algorithms [9]. Of the many successful approaches that

Ross Shannon
Systems Research Group,
School of Computer Science &
Informatics,
UCD Dublin,
Ireland
ross.shannon@ucd.ie

Aaron Quigley
HITLab Australia,
School of Computing and
Information Systems,
University of Tasmania,
Australia
aaron.quigley@utas.edu.au

Paddy Nixon
Systems Research Group,
School of Computer Science &
Informatics,
UCD Dublin,
Ireland
paddy.nixon@ucd.ie

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4195

have emerged, two in particular have many varied
uses: force-directed layout algorithms [5], and graph
clustering [13].

Force-directed layouts apply a set of attractive and
repulsive forces between the vertices and edges of a
graph, naturally generating a layout over time as a
stochastic process models the interacting forces.
Dynamically-changing graphs introduce challenges for
the viewer in effectively maintaining their internal
“mental model” of the structure under study [1], but
force-directed approaches aid the viewer by smoothly
interpolating between iterative versions of the layout,
helping to preserve the mental model [7].

Clustering techniques have been used in machine
learning to find commonality in large corpuses of data.
In the visualisation of tree and network structures,
clustering is intuitively applied to groups of vertices
using graph-theoretic properties such as shortest path
algorithms [3]. Vertices can be visually drawn close
together or otherwise associated in the view, or, if the
view is crowded or display space is limited, some
vertices may be elided (removed from view) to simplify
the drawing and call attention to key structural
properties.

Visual clustering and elision in 2D or 3D will often take
the form of multiple vertices in the original network
being represented as one, generally larger vertex in the
resulting information space. The visualisation designer
sacrifices representational fidelity for increased
effective readability of the data that is presented.
Further levels of visual abstraction may be attained if
the desired complexity of the graph drawing has not
been reached.

While the interests of the graph drawing community
have become focused on ever more large and complex
graph structures, it is important to remember that the
comparatively small graphs that were visualised at the
inception of the discipline are still very much relevant
today. These graphs represent networks on a human
scale: though the overall size of an online social
network may be in the millions, the part of it that is
relevant to a single user—that is, their own network of
friends and acquaintances—is made up of roughly 150
people [4]. Graphs of only a few dozen vertices and
edges like Figure 1 are found in computer interfaces,
videogame menus and information software. There still
exist opportunities to improve understanding, analysis
and recall of graphs at this scale.

This article presents a novel technique applicable to
small or clustered graphs which is designed to improve
recall and understanding by exploiting the human
brain’s affinity for visual pattern-matching. The
following section introduces the theory that has led to
this approach. Following this are some implementation
details and a discussion of early findings.

Symbolic Shapes
A “grapheme”, in written languages, is a single
character such as an alphabetic letter or number.
Graphemes are the fundamental building blocks of
meaning, which are combined together to form more
complex models.

Each of us can distinguish a large set of visual forms
and shapes quite easily, from the character sets used in
languages we are each familiar with, to the almost
universal set of shapes we know as squares, circles,
triangles and so on.

Figure 1. Even relatively small graphs can be
challenging to analyse, navigate and
manipulate. This graph of a social network
has 34 vertices and 76 edges [14].

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4196

Memory-supporting techniques such as the visual mind
map seen in Figure 2 and utilised by students learning
about a topic, recommend the use of color, position,
flowing lines and iconography to enhance ease of recall
[2]. The brain responds strongly to spatial layout in
particular, which has significant primacy in recall
performance [11].

Our grapheme technique is the combination of some of
the benefits of both force-directed layouts and
clustering algorithms to augment the layout that results
from the layout algorithm alone. We apply customised
sub-layouts to certain parts of the graph, arranging
them into geometric shapes, converting unstructured
clusters of vertices into nominal landmarks in the
overall structure.

Figure 2. A mind map for “Time management”, showing rich
use of icons, color and spatial layout, all of which make the
salient parts of the drawing easier to recall after viewing.1

The graph is first partitioned into subsets using an
edge-betweenness metric for detecting communities in
complex networks [8]. This results in a list of subsets of
the graph. In a person’s social network these might be
work colleagues, family, sporting friends—communities
that are intra-connected but have few links between
these subsets.

Next, we map the size of the clusters that have been
detected to a set of five primitive geometric shapes
(listed in Figure 3). Depending on the relative number
of vertices in each subset, an appropriate shape from
the range is chosen.

Shape Template Wireframes
Though further common shapes are available for use—
such as arrows and more eccentric ellipses, hexagons
etc.—at low resolutions they become difficult to
distinguish. The five shapes we currently use were
chosen for their familiarity and their horizontal
symmetry; but also because they each can be easily
broken down into a set of key vertex positions. If we
have more vertices than we need key points, the
shapes simply increase in fidelity as we position further
vertices on the lines between two required key
positions (this effect can be seen in the blue rectilinear
cluster in Figure 4).

The complexity and number of vertices needed to
represent the shapes increases as we go left to right in
Figure 3, from the triangle, which needs only three
points at minimum, through the square, circle, five-
point star and heart, which needs twelve to be
reasonably represented. This gives us a range to work
with so that clusters of different sizes will be drawn
using different shape templates.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4197

The benefit of primitive shapes is, we hypothesise, that
the resulting arrangements can be remembered
symbolically, and the relative positions are more easily
recalled, similar to how a star-gazer can remember the
relative positions of abstract patterns in the
constellations of the night sky.

Implementation
A prototype implementation has been developed using
JUNG, a Java tool for processing and visualising
network data [12]. The figures in this article have used
the Zachary’s karate club data set which is well-known
in social sciences [14]. Figure 4 shows the graph drawn
with the built-in Fruchterman-Rheingold layout
algorithm and colored to show the four main clusters
(green, red, blue and orange). One yellow vertex is not
part of any cluster.

Figure 5 shows the final layout. First, the graph is
modified to use a force-directed layout, with starting
positions derived from the vertices’ positions from
Figure 4. When assigning vertices to a shape, the key
positions (from the shape template) are filled first.
Vertices are supplied with forces which will eventually
move them into position (for example, the vertices on
opposite corners of the square template will repel each
other strongly, but are relatively attracted to the other
two corners). If any vertices are left over, they are
positioned on a line between two key positions. The
initial implementation places the additional vertex
between two random key positions.

The visualisation tool gives us the ability to selectively
loosen and lengthen the edges between vertices in
different subsets programmatically (e.g., the edge
between a vertex in the blue subset and one in the
orange subset in Figure 4). These inter-subset edges
are rendered more lightly in both figures. At the same
time we can stiffen the springs between vertices that
are in the same subset, fixing them in place relative to
each other. This gives an effect not dissimilar to the
result of using virtual vertices to exert forces in the
layout [6] (though that approach is more robust).
Slightly different parameters for the clustering
algorithm have resulted in a second unclustered vertex
in this figure.

Some artefacts can be noted in the figures. In
particular, the triangle shape which should be in effect
in the light green subset in the top left is misshapen
due to too much force being applied between two
vertices at one of its corners. The heart shape is also
not ideal.

Figure 3. A range of representations of
common geometric shapes. The top row
shows a triangle, square, circle, star and
heart respectively from left-to-right. The
second row shows the key vertex
positions making up each of these
shapes in our system. Finally, the third
line shows these shapes in their vertex
representation with no guidelines. Each
shape remains distinguishable even at
this low resolution.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4198

Discussion
This technique was developed with the aim of aiding
two cognitive processes that are known to be put to the
test when analysing a complex network structure: the
appreciation of the size of a graph and an estimation of
the number of vertices and number of clusters; and the
memory of the arrangement of the graph in general,
and the relative positions of clusters of vertices in
particular, once the graph can no longer be consulted.

The five shape templates can be arranged ordinally in
terms of how many nodes they are made up of. The
system was designed this way with a view to helping
viewers make better estimates of the size of the
clusters, and of the whole graph. If our hypothesis is
correct, shapes provide a way of counting without
counting, using only pattern analysis to estimate
figures without counting any individual vertices.

Since the human short term memory has only a finite
capacity for storing stimuli [10], replacing amorphous
clouds of vertices with organised arrangements of
vertices that can be remembered as a single symbolic
unit would seem to be a promising approach.

In the case of dynamic graphs, this technique can be
used to call attention to significant events, like vertices
being removed from a cluster, since the algorithm can
be run again, resulting in one shape transforming into
another after a significant change to the graph
structure. Likewise, stable areas of the graph structure
remain stable in the view.

(above) Figure 4. The same graph as
seen in Figure 1, drawn using a
Fruchterman-Rheingold layout algorithm.
This time, the vertices have been colored
based on the results of an
edge-betweenness measure,
which makes it clear which
vertices are most closely
connected to the others
nearby.

(below) Figure 5. After the partitioning process,
each subset is assigned a shape template based on
their relative sizes, and the forces between those
vertices are manipulated so that they take on
these specialized layouts. Vertex positions have
been fixed before the layout algorithm was
finished, to avoid the clusters drifting apart.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4199

Conclusions
We have presented work in progress on graphemes, a
novel application of visual clustering applied to graph
layouts. This system reduces complex graphs into sets
of nodes arranged to form various simple geometric
shapes, which is aimed to make it easy to remember
the layout of a graph drawing, and also to make
accurate estimates as to its overall size.

A large-scale study of the relative abilities of viewers to
successfully estimate the number of nodes in the graph
and recall the layout of clusters is ongoing. Early
results suggest that users indeed can more easily recall
the layout of a graph at a high level of abstraction by
remembering the relative positions of the shapes.

Acknowledgements: This work was supported, in
part, by Science Foundation Ireland under grant
03/CE2/I303_1 to Lero — the Irish Software
Engineering Research Centre (www.lero.ie)

References
[1] Branke, J. (2001). Dynamic graph drawing.

Springer Lecture Notes In Computer Science, 228–
246.

[2] Buzan, T. & Buzan, B. (2000). The mind map book.
BBC.

[3] Dijkstra, E. W. (1959). A note on two problems in
connexion with graphs. Numerische Mathematik 1:
269–271.

[4] Dunbar, R. I. M. (1992). Neocortex size as a
constraint on group size in primates. Journal of
Human Evolution, 20, 469–493.

[5] Eades, P. (1984). A heuristic for graph drawing.
Congressus Numerantium, 42(149160), 194–202.

[6] Eades, P. & Huang, M. L. (2000). Navigating
Clustered Graphs using Force-Directed Methods.
Journal of Graph Algorithms and Applications, 4(3),
157–181.

[7] Eades, P., Lai, W., Misue, K., & Sugiyama, K.
(1991). Preserving the mental map of a diagram.
Proceedings of Compugraphics, 91(9), 24–33.

[8] Girvan, M. and Newman, M. E. J. (2002).
Community structure in social and biological
networks. Proceedings of the National Academy of
Sciences of the United States of America, 99(12):
7821-7826.

[9] Herman, I., Melancon, G., & Marshall, M. S.
(2000). Graph Visualization and Navigation in
Information Visualization: A Survey. IEEE
Transactions on Visualization and Computer
Graphics, 6(1), 24–43.

[10] Miller GA (March 1956). The magical number seven
plus or minus two: some limits on our capacity for
processing information. Psychological Review 63
(2): 81–97.

[11] Munzner, T. (2000). Interactive visualization of
large graphs and networks. Ph.D.
Dissertation.

[12] O'Madadhain, J., Fisher, D., Smyth, P., White, S., &
Boey, Y. (2005). Analysis and visualization of
network data using JUNG. Journal of Statistical
Software.

[13] Sablowski, R. & Frick, A. (1997). Automatic graph
clustering. LNCS, 395–400.

[14] W. W. Zachary, An information flow model for
conflict and fission in small groups, Journal of
Anthropological Research 33, 452-473 (1977).

1 Figure 2 courtesy of Jean-Louis Zimmermann, used
with permission.

Outstanding Issues
The interplay between laying out
clusters of vertices in these shapes
while they are also representing other
multivariate properties (via their color
or size, for example) is still unknown.

It is unclear if this type of approach to
adding landmarks to a graph can scale
up to hundreds or thousands of nodes.
Nested layouts, with different layout
algorithms being applied at different
levels of abstraction could provide a
way to use these techniques at low
levels of a much larger network.

The technique does not perform well in
graphs with very sparse clusters, as
there are not enough vertices to make
the basic shapes. The graphs which
seem to perform best have a moderate
variability in their cluster size, and
many clusters with eight vertices or
more.

The original goal of making the nodes
completely “self-organising” as in
autonomic networks has not yet been
realised. The hard-coding of shape
templates is a temporary solution until
more sophisticated behaviour can be
achieved.

CHI 2010: Work-in-Progress (Spotlight on Posters Days 3 & 4) April 14–15, 2010, Atlanta, GA, USA

4200

