

 Ontology Models for Interaction
Design: Case Study of Online Support

Abstract
We report a case study for online self-support, which
illustrates an advanced form of work modeling based on
ontology technology. This new method enables a much
earlier understanding of the design problem and
promotes interdisciplinary design collaboration. A
functional prototype was implemented for user testing
and showed significant improvement in content
discovery.

Keywords
Work-centered design, entity modeling, work ontology,
information architecture, task analysis, faceted
navigation and search, interactive problem solving,
model-based design, methods, ontology modeling,
representation effect 

ACM Classification Keywords
H.5.2 [Information Systems]: Information Interfaces
and presentation–User Interfaces- Theory & Methods

General Terms
Design, Human Factors, Theory

Introduction
We report the successful case study for interaction
design in a work domain that is notoriously difficult for

Copyright is held by the author/owner(s).

CHI 2010, April 10 – 15, 2010, Atlanta, GA, USA

ACM 978-1-60558-930-5/10/04.

Keith A. Butler
University of Washington

Seattle, WA 98195

Keith.A.Butler@gmail.com

Anne Hunt
Primal Fusion

Toronto, Ontario, Canada

anne.hunt@primalfusion.com

John Muehleisen
Microsoft

Redmond, WA

johnmue@microsoft.com

Jiajie Zhang
University of Texas at Houston

School of Health Information

Science

Jiajie.Zhang@uth.tmc.edu

Beth Huffer
Sumaria Systems

Washington, D.C.

huffer.beth@gmail.com

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4525

end-users: online self-support for malfunctioning
personal computers (PCs). Our case study explores and
illustrates a new method based an advanced form of
work modeling. Summative user testing on a functional
prototype of the design indicated that it is significantly
more effective than the existing system (p < 0.05).

The new form of work modeling exploits ontology
management tools (OMT) [20] to capture the
fundamental characteristics of the work problem that
the new design must satisfy. These characteristics
provided stable, fundamental requirements from the
analysis stage of the project through implementation of
a fully functional prototype. The availability of the
problem model enabled several strategically important
improvements in design methods over conventional
approaches: It allowed us to understand the design
problem before making any major design decisions; It
provided the conceptual model for the information
architecture; It supported user interface (UI) design by
serving as a reference model for the interactive
representation of the problem; It enabled concurrent
engineering with widespread collaboration among our
interdisciplinary project team; The OMT model of the
problem also provided reusable code for the
application.

Early Understanding for the Design Problem
Understanding the problem that a new design must
solve is fundamental for valid requirements. From a
practical standpoint it is important for analysts to
capture that understanding early in the project, in time
to communicate it effectively before major design
decisions are made that are expensive to change.

One popular technique for understanding the design
problem is to model the work of users. Modeling and
analyses of user work in one form or another is a
fundamental step in virtually all the major design
methods for HCI [e.g., 5; 15; 27] and there are dozens
of forms of work modeling in the literature [8; 14; 18;
30]. By far, most are in the large family of task analysis
techniques. In HCI task analysis is used to model the
procedures that people will perform to accomplish work
by interacting with computers or other complex
devices. Task analysis can model the procedures of
users working either singly or in teams. The procedures
are represented in terms of action sequences,
dependencies, and hierarchies. They may represent
users’ overt behavior, e.g., actions with input devices
[8], or users’ perceptual-cognitive processes [14, 17],
or combinations. Task analysis informs design by
making explicit the procedures that are needed to take
advantage of the functions the system offers.

The strength of procedural models, however, also limits
their use for early understanding of a design problem:
A procedural model represents the use of functions.
Kieras explained that procedural models embody
fundamental design decisions about functionality and
how it is allocated among users and devices [19].
Kieras also argued that two of the most fundamental
questions that designers must answer are: What does
the system do as a whole; and what role will the
human operator play? The situation creates a paradox:
If a design problem needs work modeling to be
understood, and procedural models already embody
important design assumptions, then a procedural work
model can prematurely constrain the understanding in
serious ways.

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4526

Methodologically, Vicente [32] argued it is more likely
that a new design will realize better functional
possibilities if it is not constrained by premature
assumptions. Practically speaking, wrong choices about
functionality are increasingly expensive to change after
coding has begun.

However, by depending on procedural models
exclusively we can inadvertently relegate important
user input to a less important role in projects. Further,
when project leaders make major design decisions
without first understanding the problem that the new
system must solve, they may end up deciding that the
problem is whatever it is that their system does solve,
and deliver something unusable.

Declarative Models of Work
The situation requires a new technique to model and
analyze the problem that a design must solve in a way
that is independent of the means to solve it. One
important alternative to procedural modeling is
declarative modeling. Cognitive theorists were among
the first to recognize the importance of the distinction
between knowledge that is conceptual versus
knowledge that is procedural [1; 29]. Conceptual
knowledge consists of declarative propositions, e.g.,
“Boston is a city in Massachusetts.”

Patel & Kaufman [25] described how the distinction
plays out in the design of HCI: Roughly speaking,
declarative knowledge defines a specific application
domain, while procedural knowledge represents how a
user can perform a task with the application. Other
authors have recognized the value of declarative
models for software projects. Class diagrams are one
form of declarative modeling that has been adopted for

the analysis and design of software in the Unified
Modeling Language (UML) [3]. They represent classes
of objects and their relationships graphically for
software engineers who are working on the analysis
and design of object-oriented programs. More relevant
to HCI design is the use of class diagrams to document
an application domain in the first stage of the Use-Case
Driven method for object-oriented software by
Jacobson, et al. [16]. UML has a well known training
example that shows how to analyze the application
domain for a ticket reservation system by diagramming
its objects and relationships, such as customers, shows,
performances, tickets, etc. One limitation of class
diagrams is that they can quickly become difficult to
comprehend visually. It is not unusual to see large
printouts of class diagrams covering dozens of square
feet on walls in hallways where UML is being applied.

MODELING THE ENTITY OF DISTRIBUTED COGNITIVE WORK
We adopt the use the term “entity” here from industrial
engineering [21]. Entity models are also declarative,
but have a more focused scope and purpose than
domain modeling in UML. When industrial engineers
design work systems of people and machines to
produce a physical entity, such as a wing bracket that
is part of an airplane, that entity’s specification is used
as a fundamental requirement: If the new
manufacturing system did not produce the specified
part then it would be a failure, regardless of any other
system qualities. We understand how a specification
can be made in physical properties, such as shape,
strength and weight, in a manner that is independent of
the means to produce it. E.g., stamping, molding, or
sculpting, could each create equivalent brackets. This
important principle gives the system designer latitude

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4527

to consider a variety of system solutions, and compare
their qualities, such as cost, speed, or reliability.

Many important work entities in HCI, however, cannot
be specified by physical properties. Instead they are
cognitive entities, such as a decision, a classification, a
diagnosis, or a plan. Until recently HCI has not had a
technique to specify the entity of cognitive work in a
manner that is independent of the means to produce it.
To address this need we have adapted modeling
techniques used in research on human problem solving
in cognitive science. In particular, Zhang & Norman
[33] used declarative ontology models of the entity of
problem solving to prepare materials for their
psychology experiments. They demonstrated how
ontology models could be used to abstractly define the
fundamental characteristics of a problem in a manner
that is independent of any affordance, procedures, or
even cognitive strategy.

We view declarative modeling of a cognitive entity as
having great potential for an analogous technique to
the way specifications are used by industrial engineers:
We use it here to gain an understanding of the problem
that a HCI design must solve early in a project, without
building-in any assumptions about how the design must
be implemented or used.

ONTOLOGY MODELING
Ontology modeling techniques use declarative
propositions about a domain of conceptual knowledge.
Once a rather obscure topic in philosophy, ontology has
become important for cognitive science, the semantic
web, and software engineering, especially in health
informatics [e.g., 28].

Butler & Zhang, et al. explained how ontology modeling
can be applied to HCI design [4], and they
demonstrated how it can be used to analyze the work
entity that an aircraft scheduling system must produce
[6]. For the scheduling problem they used relational
algebra to build an abstract model of a schedule, and
then used it as a reference model to drive design for
the computations and for the UI. Unlike class diagrams
that try to capture an application domain, their model
focused narrowly on the entity (work product) that a
cognitive system for aircraft scheduling must produce.
The model revealed the complex dependencies between
scheduling an aircraft for maintenance and scheduling it
for flying, and allowed them to understand how to
integrate the two types of scheduling. With this
specification they were able to decide how it could be
produced via an effective distribution of processing
between user and computer.

Butler & Zhang, et al. also argued that declarative work
modeling does not replace or diminish the importance
of task analysis, but can actually make it more
powerful. They showed how the entity model could
serve as a specification to evaluate the design’s
procedures. The evaluation focused on their ability to
change the entity from its starting state to the required
goal state.

ONTOLOGY MANAGEMENT TOOLS
In recent years several ontology management tools
(OMT) have been implemented using knowledge
representation techniques, such as first-order predicate
calculus [e.g., 2 & 20]. Ontology models in OMT are
made up of declarative propositions about objects and
relationships, but OMT differ from class diagramming
tools in several important ways. In OMT the visual

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4528

representation is not the main manner of interacting
with the model, it is mostly for team communication.
Computational inference is one of the most important
features of OMT. Once a declarative work model is
defined in OMT it is a computational object that can
respond to queries. OMT models can serve in the
analysis of an application domain, and then be reused
as a component of the application software. An
additional benefit is that OMT inference capabilities can
be used to build large parts of an ontology model by
elaborating on existing propositions, thereby reducing
significant manual labor and making ontology use more
practical.

OMTs were originally intended to improve information
retrieval for web-based search or to build the
knowledge base of artificial intelligence applications
[20]. However, we will describe a new use of OMT. In
the following case study our use of OMT was to
understand and model the problem space from a user’s
perspective before making any major design decisions.
We then show how the OMT model was reused in
several valuable ways: to promote interdisciplinary
team collaboration; to generate the information
architecture; to inform the design of the user interface;
and as a computational component of the software in
the new application.

Case Study of Online Self-support
Each year several hundreds of millions of users from
dozens of countries visit http://support.microsoft.com
to seek support and service. The content, and the
experience of finding that content, were originally
intended for computing professionals. However the
majority of users now identify themselves as “home
users” of personal computing (PC). The case study we

report here was a response to the need to reinvent
their experience when they come to the site for support
to deal with a malfunction on their PCs.

The design for technical support should cover the entire
user’s experience, from the point where they first
notice a malfunction through verification of successful
procedures to deal with it. The focus of this case study
is on the experience for discovering the content needed
to deal with their problem. An integrated, companion
project by Douglass-Olberg, et al. [9] improved the
procedures of the content. Partial implementation can
be viewed in the content now at the support site.

The following sections begin with a summary of
contextual research findings, and then describe
techniques and examples for modeling the user’s
problem space in OMT. We then explain how that model
drove the selection of user interface technology and an
integrated design effort that included the user
interface, information architecture, and implementation
factors. The section concludes with a summary of user
testing results.

Background
We analyzed monthly data on the topics of calls to
support centers and on user visits to support content
on web sites. The data gave us problem trends and
estimates of current success rates, but to help interpret
them we need direct data on the current experience for
home users.

We conducted half-day visits for contextual research
[15] in the homes of about 50 home-users in seven
major cities North America, Europe, and Asia. They
provided us with work samples, inventories of software

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4529

on their PCs, and
common problem
scenarios. We
interviewed about
problem solving
strategies and
resources, the values
that motivate home
users, and probed for
technical knowledge
about computing.

Digital photography is a
very popular hobby for
home users. They place
great value their
photos and other
personal data but do
not have convenient
resources to back up
data. Home users do
have good problem-
solving skills for online
tasks like shopping. But
they are hesitant about
problem-solving for
online self-support due to risk of making problems
worse or even losing their valuable personal data.
Home users often do not understand error messages
and commonly try to close them or ignore them.

Home users do not typically have useful mental models
of how their computers work. They have difficulty
distinguishing which of the products on their PCs is

malfunctioning and whether the problem is in hardware
software. Consequently, they don’t know which
company they should turn to for support. They define
their support experience as beginning when they notice
a malfunction and concluding with verification of its
repair. Home users can recognize the terms and feature
names in applications and windows.

Figure 1: Partial schema for OMT model

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4530

Home users
typically have
internet access,
unless the
malfunction
disables browsers
or networks. Those
cases are a fairly
small percent, but
when home users
seek support the
most common
resources are
family, friends, or
someone nearby
who provides
support services
for a fee.

Our findings
indicate that self-
support needs to
increase in the
awareness and
attractiveness of
home users’
decision-making.
The online experience must compare favorably to other
options in convenience and predictability, and by
making a much stronger connection between the
experience of a malfunction and the discovery of online
content to deal with it.

Modeling the User’s Problem
Our objective for this step was to understand the
problem that home users encounter with the web space

where support content resides. We focused on how to
characterize the problem space and how this entity
changes state as users progress towards a solution. We
initially chose three representative products: Xbox,
Word, and XP, with content sets that are small, mid-
sized and large, respectively. This first group of
products, and eventually all major home user products,
were modeled using the TopBraid OMT
(www.topbraidcomposer.com).

Figure 0: Screenshot of portion of OMT model

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4531

Figure 1 shows a partial schema of the model for Xbox,
which is composed of objects, operations, and
constraints. The operations are for tasks that
consumers attempt with Xbox, and the objects (and
their names) are part of the consumer’s experience
with the product. The knowledge for the user
operations and objects was acquired by inspecting the
UI of each product with experts. The model for each
product provides, in effect, a high-level summary of
product operations by users.

Unlike conventional ontology modeling, our model is
based on the user tasks and the features of the
products that home users could observe. In order to
strengthen the association between product use and
self-support we constructed the OMT model from
aspects of the user’s experience with the products: the
task operations, visible objects in their experience, and
terms that are recognizable to home users. Constraints
and inference rules are important parts of the model,
but they were provided from technical experts on the
products, and not directly part of users’ experience.
The model also defined the space of suitable problems
for consumers to attempt self-support. The models for
all consumer products define the problem domain, and
later were used to assemble a network of concepts that
serves as the user’s problem space.

Figure 2 is a screen shot of part of the actual model for
Xbox, as implemented in TopBraid. The model provides
an underlying architecture for the information in the
problem space. The model instantiates a graph, which
is essentially a navigable network of pathways through
the complex, interrelated objects of the product support
domain. Support content was tagged to the terms of
the OMT model for each product by a combination of

automated and manual techniques. This was an
important innovation to connect the user’s problem
solving, the problem space, and support content, to the
user’s experience with the product. We treated the
problem space as an entity that users work on to arrive
at the goal state- an intersection with the content they
need. However, it is important to note that OMT is not
intended for end-users. Home users interact with a UI
that represents problem space, as described later.

Concurrent Engineering
A superior user-centered design can only impact users
when it is complemented by effective technology-
centered designs for implementation with network
communication, data management, etc. Large, complex
systems require the effective integration of design
efforts from several disciplines.

Our first two steps gave us an understanding of the
context and nature of the user’s problem before we
made major design decisions about how users should
discover content. As shown in figure 3, the availability
of the OMT model allowed us to make major design
decisions in an unconventional sequence that promoted
interdisciplinary collaboration. The OMT provided a
common model for multidisciplinary collaboration
across the teams for user interface design, information
architecture, and technical infrastructure design. The
work in these disciplines progressed in parallel using a
concurrent engineering method [26]. The technology
for the user interface and the infrastructure for
implementing it were determined at an architectural
level in parallel.

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4532

Figure 3: Unconventional project flow

In the following sections we explain how we chose the
UI technology for an interactive visualization of the
problem space, how we derived an information
architecture from the OMT model to support the user’s
interactions, and how we integrated design to the
detailed level by iterating among the disciplines.

UI TECHNOLOGY SELECTION
The then-current system constrained the user’s task as
a web search, however we view search as a technology,
not as a type of user problem. In our approach the role
of the UI is to provide an interactive representation of
the problem space, to provide affordances to change the
state of the space, and to provide visibility of the changes.
Rather than the accepting the existing constraints, we
first understood the problem space and then surveyed
visualization technology for a suitable UI development
tool that would allow the user to view and interact with
the problem space that was defined in the OMT model.

We asked our designers and analysts to think in a way
that was constrained only by the fact that the content
is online, and by reasonable parameters for time and
budget. We applied Zhang’s technique for
representational analysis [34] to the candidate
technologies to narrow the list to those that were
suitable to provide an interactive representation of the
problem space. We then made our selection for one
that could be implemented by a fairly inexpensive
extension of the existing technical infrastructure.

We chose the Flamenco capability for faceted
navigation and search for our users to view and interact
with the problem space [12; 13]. Facets in Flamenco
work well with a browser and they enable users to
interact with a problem space by selecting combinations
of the facets, which represent the dimensions that
organize the space.

INFORMATION ARCHITECTURE
Our information architecture provides a virtual
organization to help users discover the content they
need. An important factor is that support content is
driven largely by accidental software failures in
software products. The randomness of the failures
makes it difficult to find organizing patterns within the
large library of content that are understandable to
home users. For example, if some form of cluster
analysis were used, the contrasting dimensions might
be interesting to a quality engineer, but are likely to
confuse a home user. Our information architecture was
derived from the problem space, and provided a
structure for organizing content around dimensions that
are understandable to home users.

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4533

We developed an information architecture that
corresponds to the problem space by querying the OMT
model. The queries were carried out using the native
query capability in the TopBraid tool suite. The result of
the queries formed a facet graph that governs the
behavior of the facets. The graph required very little
manual editing.

Facets provide users with an understandable path
through their problem space. Given some user input,
usually a mouse click on a facet the system responds
with options that are neighbors in the facet graph.
Facets are not strictly within the same taxonomic
hierarchy. The facet graph is composed of thousands of
facets and relationships among them. The definition
and maintenance of these relationships was
accomplished by modeling, in the OMT, via general
business rules that were used to infer the facet-
relatedness graph. We used an ontology-language
representation of the associated business rules to
produce a view of the data for use in faceted navigation
and search. Examples of these rules include:
“Users interested in a product are interested in
activities that can be done using that product.”

“Users interested in an activity such as printing
documents are interested in the hardware needed to do
that activity.”

These types of rules can be adjusted as user
requirements change, without affecting the basic model
of products, user tasks, and product symptoms.

Our information architecture is virtual: It does not
involve any changes to content. Instead, the support
content was associated to the OMT dimensions through

a combination of manual and automated tagging.
Tagging consists of identifying a relationship between
the terms of the OMT model and support content, and
storing the results in a database. When the user selects
a combination of facets the graph surfaces a set of
tagged support content as results, where each item of
content in the results set is one that was previously
tagged, with the selected nodes. (Any node in the
graph can be a tag associated with some content.)

INTERACTION DESIGN
The management of both page navigation and results
refinement is handled by the facet graph. The facets
may appear as links or icons to navigate pages or as
terms to refine results during search. In this technique
the same facet graph integrates all user interactions
with the problem space.

Facets provide the user with the ability to control a
sequence of intersecting sets. In the example of figure
4, users first came to the home page and selected an
icon, e.g., for security. The UI then navigated to a page
for those products with relevant search results and
more facets to refine the results.

As shown in figure 4, the result page consisted of three
primary components: (1) the facets panel on the left,
labeled as “Refine your results”; (2) The Search
Results; (3) the Search box in which users can type
additional search queries if desired. The facet panel
provides users with an affordance to navigate and
interact with the complex problem space by referring to
their experience with the product. The facets’ terms
correspond to the user’s experience with product use.

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4534

Users can control
facets to create a
sequence of
intersecting sets in
the problem space by
simply clicking on
chosen facets. With
each selection, the
user can either
choose content from
the list of results, or
make another selection
from the updated set of
browsing options. If
the user makes another
selection from the
updated set of browsing
options, the number of
assets in the results set
is reduced to only those
assets that are tagged
with all of the
previously selected
nodes and the newly
selected node. With
each additional selection, the results set is narrowed
further until the user is left with a very short list of
highly relevant documents, thereby obviating the need
to sort through a large volume of irrelevant
information, and increasing the likelihood that the
needed content is among the results presented.

The facets’ behavior is driven by the information
architecture to give users an interactive representation
of the problem space. Users see only their current
portion of the problem space. This is a characteristic of

a large set of facets, which in any configuration display
only a portion of the problem space. Even with
substantial interaction, users may not see the complete
space, but our test data indicate that it is not necessary
for users to see the entire space in order to discover
content effectively.

Prototype for Design Validation
The purpose of the design validation was twofold: (1)
determine empirically whether users perform their
procedures as intended; and (2) determine if the new

Figure 4: facets as they appear in the results UI

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4535

design increases the success rate for content discovery
over the then-current system (baseline).

Facets allow users to select any permutation of terms,
making it too difficult to conduct an evaluation with any
type of simulated user interface. To support design
validation we developed a functional prototype of
software with about twenty-thousand pieces of tagged
content using Flamenco [12; 13]. The validation study
was a between-subjects experiment, where the
independent variable was the version of the system:
the prototype vs. the then current baseline version of
the support web site. Each test condition collected data
from twenty-two participants, who attempted same set
of benchmark scenarios in randomized order. Each
group had 22 participants who completed the testing.
They were recruited from the consumer segment of a
regional usability test services’ participant database.
The participants were classified primarily as home
computer users. Participants were rewarded with free
software upon completing the study, regardless of their
results.

The problem scenarios were chosen from the 100 most-
frequent reported problems to call centers, across a
variety of support-task types. Each participant’s
computer was deliberately “broken” before they
arrived. They were instructed to perform a task that
would encounter the planted malfunction, e.g., “You
want to download pictures from the web to make a
Valentine’s Day card.” When they could not perform the
initial task, they were asked to solve the problem of
how to fix the computer by going to one of the two web
sites for their experimental condition. The goal state
was satisfied if they discovered and recognized the

content to fix the problem. They were not required to
actually complete the repair.

Summary of Test Results
The most important result from the prototype test was
that users enjoyed a 33% increase in solution discovery
over the baseline version (p < 0.05). In addition, the
prototype had 52% fewer “give-up” trials, 74% fewer
search queries, and non-significant trends for fewer
false-positives and fewer overall user actions. Another
encouraging outcome was the degree to which study
participants attended to and interacted with the facets.
The UI induced virtually all users to follow the user
procedures as intended, whether or not they discovered
the solution. The only recorded measure where the
prototype was not better was its increase for false
negatives (p < 0.01). Recorded comments indicate this
is probably due to users attending to the facet panel
after the target had already appeared in the results.

Conclusions & Discussion
It is important to evaluate new methods for analysis
and design with objective data. We offer here a second
case study, this one with a measurably better design
solution, as shown by head-to-head testing against the
then-current system. We believe the measurable
improvement resulted largely from understanding the
problem independently of the means to solve it before
making major design decision. We recognize many
other factors could play a role in these positive results,
such as facets or a highly skilled team. However, the
project unfolded largely as planned and the OMT model
played a pivotal role.

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4536

Conclusions for the Application
The main conclusion for the application design is that
technical self-support by consumers can be significantly
improved by providing them with an interactive
visualization of their problem space. Earlier designs for
online self-support were based on a more narrow view
that the users’ task was essentially to search and find
relevant information about their problems. In our
design the users’ task is defined more broadly as
problem solving, which begins when they notice a
possible malfunction. We intended facets to provide a
representation of the problem space that allows users
to recognize how their experience with a product is
related to discovering the support content they need.

Related Work
Some forms of cognitive modeling in HCI also use
conceptual knowledge. Cognitive modeling has been
proposed as a technique for understanding the
complexity of the user’s device [26]. Our use is
different and follows the distinction proposed by Long &
Dowell. They view interactive applications as joint
human-machine work-systems that are constrained by
the application domain, but separate from it [10; 22].
Following this framework Dowell developed a
formulation of the cognitive design problem for air
traffic management [11] based on a three-dimensional
model of aircraft separation. In some important sense
the entity of air traffic management is the preservation
of required aircraft separations in three dimensions. In
this manner the entity can be defined independently
from any particular machine or system design to
perform the cognitive work of air traffic management.

Our use of OMT extends their concepts in several ways:
To make a clearer connection to theory in cognitive

science; to make the practice of design more efficient;
and to move towards integrating HCI design with the
other disciplines that it depends on for implementation.
This distinction also complements conventional work
modeling practice for HCI design, which typically
focuses on procedural models.

DESCRIPTIVE VS. PRESCRIPTIVE MODELS
Conceptual modeling can be used in two ways: to
describe how people think, or prescribe a better way for
them to think. This distinction is also observed in
research on decision-making, where prescriptive
decision processes are designed to compensate for
biases that often interfere with good practice [31]. Our
use of conceptual knowledge modeling is prescriptive
for two reasons. The model’s purpose is to induce more
efficient problem solving in users than their current
understanding allows. Also, home users could not be
expected to know about the entire problem space in our
model because it covers so much detail on so many
products.

DISTRIBUTED COGNITION AND EXTERNAL REPRESENTATIONS
We view interactive computing is an important type of
distributed cognition [33; 34; 35]. Ontology modeling
was used in research on distributed cognition to
prepare materials for problem solving experiments. By
deriving each representation from the ontology they
assured that each was isomorphic (logically equivalent)
to the problem ontology.

Our use of entity modeling is analogous. We treat the
user interface as a form of external representation of
the user’s problem. Our use of ontology is to assure
that the user interface and supporting functionality
provide an accurate, interactive representation of the

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4537

problem. Its value proposition is to re-distribute
cognitive processing to be more effective [7], while not
penalizing the user with inefficient tasks.

More Economical Designing
Our approach is strongly influenced by well-established
methods for industrial engineering where complex
human-machine systems are designed to produce
physical products. A specification of the physical
product that the new system must produce routinely
drives design in industrial engineering. In an analogous
way we used OMT to specify key characteristics of the
entity (product) of distributed cognitive work. We call
this approach work-centered design.

Without a clear specification of the entity that a system
is supposed to produce the designer is pressured to
over-supply functions and features in an attempt to
make certain the needed entity is among the things it
does produce. We see this situation in the current state
of the art for interactive software engineering. Many
software products include features that are rarely used
but expensive to encode. After the product is released
the inefficiency takes a new form: un-needed functions
and features impose a severe form of uncontrolled
cognitive overhead on users that interferes with
productive work. Entity models can capture important,
stable requirements that are independent of the
context in which the work is performed or the
technology that assists it [4]. We believe OMT can help
designers make better decisions about the need for
features and functions.

DESIGNING FOR NEW TYPES OF WORK
The inefficiency of design is likely to get worse. Early in
the evolution of business computing there were many

valuable applications that automated portions of human
work that were well understood but too time
consuming, error-prone, etc. For these applications
designers had the benefit of familiarity to help them
understand the nature of the deign problem. More
recently the value of computing has moved towards
applications that create new forms of work that could
not have existed without computing. Without some way
to understand the problem that a design is supposed to
solve the risk of project failure will likely increase. We
believe declarative modeling of the cognitive work
entity will become more important as computing
invents more new, important kinds of work.

COMPLEMENT TO PROCEDURAL WORK MODELING
Declarative work models do not replace procedural
models. They have a different purpose. One way they
complement is that a declarative model of the entity of
cognitive work should serve as the primary evaluation
criterion for procedural models. Different design
procedures could be compared in terms of their
qualities, such as usability or cost. But in order to be
comparable the procedures must produce the same
work entity. We are currently planning research on how
performance models [e.g., 17] can provide measures of
efficiency to compare verified, alternate designs.

Applicability
Our approach was developed for interactive, technical
problem solving. Its applicability to other types of
cognitive work has yet to be studied. We recommend it
for applications where a clear definition of success can
be defined and the problem is technical, large,
complex, and valuable. There is legitimate concern
about the cost of such a thorough analysis, but it
important to note that the constraints of the entity on

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4538

the success of a design will be in effect whether or not
a project makes them explicit. Consequently, it can be
far less expensive than the hit-or-miss tactics of many
projects. It should also be valuable to managers who
lead software projects for high-stakes systems, such as
health-critical or safety-critical applications.

ACKNOWLEDGMENTS
We thank George Robertson, Susan Dumais, Marty
Hearst, and Axel Roesler, for their valuable technical
advice and encouragement. Research on the role of
ontology in design was supported by USAF/AFMC Air
Force Research Lab contract F33615-03-2-6315, Work-
Centered Support Systems for Autonomic Logistics,
2004-2007. POC: Capt. Mike Blake, telephone (937)
255-8049. The case study material was released for
publication by Microsoft on October 6, 2008. POC: D.
Shannon, dshannon@microsoft.com.

References
[1] Anderson, J.R. The architecture of cognition.
Cambridge, MA: Harvard University Press, 1983.

[2] Angele, J. & Sure, Y. (Ed.s) Evaluation of Ontology-
based Tools. Proceedings of the OntoWeb-SIG3
Workshop at the 13th International Conference on
Knowledge Engineering and Knowledge Management
EKAW 2002. Published as CEUR-WS Vol-62 http://ceur-
ws.org

[3] Booch, G.; Rumbaugh, J.; & Jacobson, I. The
Complete UML Training Course. Prentice-Hall, 2000.

[4] Butler, K. A. and Zhang, J. (2009): Design models
for interactive problem-solving: context & ontology,
representation & routines. Ext. Abstracts CHI 2009,
ACM Press (2009), 1-2. 4315-4320.

[5] Butler, K.A. Usability Engineering Turns 10.
Interactions, 1, (1996), 59-75.

[6] Butler, K.A.; Zhang, J; Esposito, C; Bahrami, A.;
Hebron, R.; & Kieras, D. Work-centered design: a case
study of a mixed-initiative scheduler. In: Proc. CHI
2007, 747-756, ACM Press, 2007.

[7] Card, S.K.; Piroli, P.; & Mackinlay, J. The Cost-of-
Knowledge Characteristic Function: Display Evaluation
for Direct-Walk Dynamic Information Visualizations. In:
Card, Mackinlay, & Schneiderman (Ed.s) Readings in
Information Visualization: Using Vision to Think.
Morgan Kaufmann. 582-588, 1999.

[8] Diaper, D. & Stanton, N. (ed.s). The Handbook of
Task Analysis for Human-Computer Interaction.
Mahwah, NJ: Erlbaum, 2004.

[9] Douglass-Olberg, C., Farkas, D., Steehouder,
M., Karreman, J., Kieras, D., Resoler, A., Dalal, N.,
Baker, R. & Brunet, D. The new face of procedural
content: a real world approach. Ext. Abstracts CHI
2008, pp. 3495-3500, ACM Press, 2008.

[10] Dowell, J., & Long, J. Towards a conception for an
engineering discipline of human factors. Ergonomics,
32, 1513-1535, 1989.

[11] Dowell, J. Formulating the Cognitive Design
Problem of Air Traffic Management. Int. Journal of
Human- Computer Studies. 49(5), pp. 743-766 1998.

[12] Elliot, A. Flamenco Image Browser: Using Metadata
to Improve Image Search During Architectural Design.
In Proc. CHI 2001, ACM Press, 2000.

[13] Hearst, M. Next Generation Web Search: Setting
Our Sites. IEEE Data Engineering Bulletin, Special issue
on Next Generation Web Search, Sept., 2000.

[14] Hollnagel, E. Handbook of Cognitive Task Design.
Mahwah, NJ: Erlbaum, 2003.

[15] Holtzblatt, K. & Beyer, H. Contextual Design.
Morgan-Kaufmann, 1998.

[16] Jacobson, I., Christerson, M., Jonsson, P., &
Overgaard, G. Object-oriented software engineering - a
use case driven approach. Reading, MA: Addison-
Wesley 1992.

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4539

[17] John, B. E., & Kieras, D. E. The GOMS family of
user interface analysis techniques: Comparison and
contrast. ACM Transactions on Computer-Human
Interaction, 3, 320-351, 1996.

[18] Kirwan, B. & Ainsworth, L.K. A Guide to Task
Analysis. London: Taylor & Francis, 1992.

[19] Kieras, D. E. Task analysis and the design of
functionality. In A. Tucker (Ed.) The Computer Science
and Engineering Handbook (2nd Ed). Boca Raton, CRC
Press, 2004.

[20] Knublauch, H. An AI Tool for the Real World:
Knowledge Modeling with Protégé.
JavaWorld.com, 06/20/03.

[21] Law, A. and Kelton, W.D. Simulation Modeling
and Analysis, Third Edition, McGraw-Hill, 2000.

[22] Long, J. & Dowell, J. Conceptions of the Discipline
of HCI: Craft. Applied Science, and Engineering. In:
Proc. Fifth Conference of the BCS HCI SIG. Cambridge
University Press, 1989.

[23] Newell, A. and H.A. Simon. Human Problem
Solving. Englewood Cliffs, NJ: Prentice-Hall, 1972.

[24] Parsaei, H. R. & Sullivan, W. G. Concurrent
engineering: contemporary issues and modern design
tools. London: Chapman-Hall, 1993.

[25] Patel, V. & Kaufman, D. Cognitive Science and
Biomedical Informatics. In: E. Shortliffe & J. Cimino
(ed.s) Biomedical Informatics, Third Edition. Springer.
Pp. 133-85. (2006)

[26] Payne, S.J. (2003) User’s Mental Models: The
Very Ideas. In: J. Carroll (Ed.) HCI Models, Theories,
and Frameworks: Toward a Multidisciplinary Science.
Morgan-Kaufmann Pp. 135-156.

[27] Preece, J; Rogers, Y.; Sharp, H.; Benyon, D.;
Holland, S.; & Carey, T. Human-Computer Interaction.
Reading, MA: Addison-Wesley, 1994.

[28] Rosse, C. & Mejino, J. L. A Reference Ontology for
Biomedical Informatics. J. Biomedical Informatics,
36(6), pp. 478-500, 2003.

[29] Rumelhart, D. E., & Norman, D. A. Representation
in memory. In R. C. Atkinson, R. J. Herrnstein, G.
Lindzey, & R. D. Luce (Eds.), Stevens’ Handbook of
Experimental Psychology, 2nd edition. New York: Wiley,
1998.

[30] Schraagen, J.; Chapman, S.; & Shalin, V. (ed.s),
Cognitive Task Analysis. Mahwah, NJ: Erlbaum, 2000.

[31] Skinner, D. Introduction to Decision Analysis.
Probabilistic Press, 1999.

[32] Vicente, K. Work Domain Analysis and Task
Analysis: A Difference That Matters. In: J. Schraagen;
S. Chapman; & V.Shalin (ed.s), Cognitive Task
Analysis. Mahwah, NJ: Erlbaum, 2000.

[33] Zhang, J. & Norman, D. Representations in
distributed cognitive tasks. Cognitive Science, 18, pp.
87-122, 1994.

[34] Zhang J. A representational analysis of relational
information displays. International Journal of Human-
Computer Studies, 45, 59-74, 1996.

[35] Zhang, J. External Representations in Complex
Information Processing Tasks. In: A. Kent, (ed.),
Encyclopedia of Library and Information Science. Marcel
Dekker, New York, 2001.

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4540

