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Abstract 
We report a case study for online self-support, which 
illustrates an advanced form of work modeling based on 
ontology technology. This new method enables a much 
earlier understanding of the design problem and 
promotes interdisciplinary design collaboration. A 
functional prototype was implemented for user testing 
and showed significant improvement in content 
discovery.  
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Introduction 
We report the successful case study for interaction 
design in a work domain that is notoriously difficult for 
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end-users: online self-support for malfunctioning 
personal computers (PCs). Our case study explores and 
illustrates a new method based an advanced form of 
work modeling. Summative user testing on a functional 
prototype of the design indicated that it is significantly 
more effective than the existing system (p < 0.05).  

The new form of work modeling exploits ontology 
management tools (OMT) [20] to capture the 
fundamental characteristics of the work problem that 
the new design must satisfy. These characteristics 
provided stable, fundamental requirements from the 
analysis stage of the project through implementation of 
a fully functional prototype. The availability of the 
problem model enabled several strategically important 
improvements in design methods over conventional 
approaches: It allowed us to understand the design 
problem before making any major design decisions; It 
provided the conceptual model for the information 
architecture; It supported user interface (UI) design by 
serving as a reference model for the interactive 
representation of the problem; It enabled concurrent 
engineering with widespread collaboration among our 
interdisciplinary project team; The OMT model of the 
problem also provided reusable code for the 
application. 

Early Understanding for the Design Problem 
Understanding the problem that a new design must 
solve is fundamental for valid requirements. From a 
practical standpoint it is important for analysts to 
capture that understanding early in the project, in time 
to communicate it effectively before major design 
decisions are made that are expensive to change.  

One popular technique for understanding the design 
problem is to model the work of users. Modeling and 
analyses of user work in one form or another is a 
fundamental step in virtually all the major design 
methods for HCI [e.g., 5; 15; 27] and there are dozens 
of forms of work modeling in the literature [8; 14; 18; 
30]. By far, most are in the large family of task analysis 
techniques. In HCI task analysis is used to model the 
procedures that people will perform to accomplish work 
by interacting with computers or other complex 
devices. Task analysis can model the procedures of 
users working either singly or in teams. The procedures 
are represented in terms of action sequences, 
dependencies, and hierarchies. They may represent 
users’ overt behavior, e.g., actions with input devices 
[8], or users’ perceptual-cognitive processes [14, 17], 
or combinations. Task analysis informs design by 
making explicit the procedures that are needed to take 
advantage of the functions the system offers. 

The strength of procedural models, however, also limits 
their use for early understanding of a design problem: 
A procedural model represents the use of functions. 
Kieras explained that procedural models embody 
fundamental design decisions about functionality and 
how it is allocated among users and devices [19]. 
Kieras also argued that two of the most fundamental 
questions that designers must answer are: What does 
the system do as a whole; and what role will the 
human operator play? The situation creates a paradox: 
If a design problem needs work modeling to be 
understood, and procedural models already embody 
important design assumptions, then a procedural work 
model can prematurely constrain the understanding in 
serious ways.  
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Methodologically, Vicente [32] argued it is more likely 
that a new design will realize better functional 
possibilities if it is not constrained by premature 
assumptions. Practically speaking, wrong choices about 
functionality are increasingly expensive to change after 
coding has begun.  

However, by depending on procedural models 
exclusively we can inadvertently relegate important 
user input to a less important role in projects. Further, 
when project leaders make major design decisions 
without first understanding the problem that the new 
system must solve, they may end up deciding that the 
problem is whatever it is that their system does solve, 
and deliver something unusable. 

Declarative Models of Work 
The situation requires a new technique to model and 
analyze the problem that a design must solve in a way 
that is independent of the means to solve it. One 
important alternative to procedural modeling is 
declarative modeling. Cognitive theorists were among 
the first to recognize the importance of the distinction 
between knowledge that is conceptual versus 
knowledge that is procedural [1; 29].  Conceptual 
knowledge consists of declarative propositions, e.g., 
“Boston is a city in Massachusetts.”  

Patel & Kaufman [25] described how the distinction 
plays out in the design of HCI: Roughly speaking, 
declarative knowledge defines a specific application 
domain, while procedural knowledge represents how a 
user can perform a task with the application. Other 
authors have recognized the value of declarative 
models for software projects. Class diagrams are one 
form of declarative modeling that has been adopted for 

the analysis and design of software in the Unified 
Modeling Language (UML) [3]. They represent classes 
of objects and their relationships graphically for 
software engineers who are working on the analysis 
and design of object-oriented programs. More relevant 
to HCI design is the use of class diagrams to document 
an application domain in the first stage of the Use-Case 
Driven method for object-oriented software by 
Jacobson, et al. [16]. UML has a well known training 
example that shows how to analyze the application 
domain for a ticket reservation system by diagramming 
its objects and relationships, such as customers, shows, 
performances, tickets, etc.  One limitation of class 
diagrams is that they can quickly become difficult to 
comprehend visually. It is not unusual to see large 
printouts of class diagrams covering dozens of square 
feet on walls in hallways where UML is being applied.  

MODELING THE ENTITY OF DISTRIBUTED COGNITIVE WORK 
We adopt the use the term “entity” here from industrial 
engineering [21]. Entity models are also declarative, 
but have a more focused scope and purpose than 
domain modeling in UML. When industrial engineers 
design work systems of people and machines to 
produce a physical entity, such as a wing bracket that 
is part of an airplane, that entity’s specification is used 
as a fundamental requirement: If the new 
manufacturing system did not produce the specified 
part then it would be a failure, regardless of any other 
system qualities. We understand how a specification 
can be made in physical properties, such as shape, 
strength and weight, in a manner that is independent of 
the means to produce it. E.g., stamping, molding, or 
sculpting, could each create equivalent brackets. This 
important principle gives the system designer latitude 
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to consider a variety of system solutions, and compare 
their qualities, such as cost, speed, or reliability.  

Many important work entities in HCI, however, cannot 
be specified by physical properties. Instead they are 
cognitive entities, such as a decision, a classification, a 
diagnosis, or a plan. Until recently HCI has not had a 
technique to specify the entity of cognitive work in a 
manner that is independent of the means to produce it. 
To address this need we have adapted modeling 
techniques used in research on human problem solving 
in cognitive science. In particular, Zhang & Norman 
[33] used declarative ontology models of the entity of 
problem solving to prepare materials for their 
psychology experiments. They demonstrated how 
ontology models could be used to abstractly define the 
fundamental characteristics of a problem in a manner 
that is independent of any affordance, procedures, or 
even cognitive strategy.   

We view declarative modeling of a cognitive entity as 
having great potential for an analogous technique to 
the way specifications are used by industrial engineers: 
We use it here to gain an understanding of the problem 
that a HCI design must solve early in a project, without 
building-in any assumptions about how the design must 
be implemented or used.  

ONTOLOGY MODELING 
Ontology modeling techniques use declarative 
propositions about a domain of conceptual knowledge.  
Once a rather obscure topic in philosophy, ontology has 
become important for cognitive science, the semantic 
web, and software engineering, especially in health 
informatics [e.g., 28].  

Butler & Zhang, et al. explained how ontology modeling 
can be applied to HCI design [4], and they 
demonstrated how it can be used to analyze the work 
entity that an aircraft scheduling system must produce 
[6]. For the scheduling problem they used relational 
algebra to build an abstract model of a schedule, and 
then used it as a reference model to drive design for 
the computations and for the UI. Unlike class diagrams 
that try to capture an application domain, their model 
focused narrowly on the entity (work product) that a 
cognitive system for aircraft scheduling must produce. 
The model revealed the complex dependencies between 
scheduling an aircraft for maintenance and scheduling it 
for flying, and allowed them to understand how to 
integrate the two types of scheduling. With this 
specification they were able to decide how it could be 
produced via an effective distribution of processing 
between user and computer. 

Butler & Zhang, et al. also argued that declarative work 
modeling does not replace or diminish the importance 
of task analysis, but can actually make it more 
powerful. They showed how the entity model could 
serve as a specification to evaluate the design’s 
procedures. The evaluation focused on their ability to 
change the entity from its starting state to the required 
goal state.  

ONTOLOGY MANAGEMENT TOOLS 
In recent years several ontology management tools 
(OMT) have been implemented using knowledge 
representation techniques, such as first-order predicate 
calculus [e.g., 2 & 20]. Ontology models in OMT are 
made up of declarative propositions about objects and 
relationships, but OMT differ from class diagramming 
tools in several important ways. In OMT the visual 
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representation is not the main manner of interacting 
with the model, it is mostly for team communication. 
Computational inference is one of the most important 
features of OMT. Once a declarative work model is 
defined in OMT it is a computational object that can 
respond to queries. OMT models can serve in the 
analysis of an application domain, and then be reused 
as a component of the application software. An 
additional benefit is that OMT inference capabilities can 
be used to build large parts of an ontology model by 
elaborating on existing propositions, thereby reducing 
significant manual labor and making ontology use more 
practical. 

OMTs were originally intended to improve information 
retrieval for web-based search or to build the 
knowledge base of artificial intelligence applications 
[20]. However, we will describe a new use of OMT. In 
the following case study our use of OMT was to 
understand and model the problem space from a user’s 
perspective before making any major design decisions. 
We then show how the OMT model was reused in 
several valuable ways: to promote interdisciplinary 
team collaboration; to generate the information 
architecture; to inform the design of the user interface; 
and as a computational component of the software in 
the new application.  

Case Study of Online Self-support 
Each year several hundreds of millions of users from 
dozens of countries visit http://support.microsoft.com 
to seek support and service. The content, and the 
experience of finding that content, were originally 
intended for computing professionals. However the 
majority of users now identify themselves as “home 
users” of personal computing (PC). The case study we 

report here was a response to the need to reinvent 
their experience when they come to the site for support 
to deal with a malfunction on their PCs.  

The design for technical support should cover the entire 
user’s experience, from the point where they first 
notice a malfunction through verification of successful 
procedures to deal with it. The focus of this case study 
is on the experience for discovering the content needed 
to deal with their problem. An integrated, companion 
project by Douglass-Olberg, et al. [9] improved the 
procedures of the content. Partial implementation can 
be viewed in the content now at the support site. 

The following sections begin with a summary of 
contextual research findings, and then describe 
techniques and examples for modeling the user’s 
problem space in OMT. We then explain how that model 
drove the selection of user interface technology and an 
integrated design effort that included the user 
interface, information architecture, and implementation 
factors.  The section concludes with a summary of user 
testing results. 

Background  
We analyzed monthly data on the topics of calls to 
support centers and on user visits to support content 
on web sites. The data gave us problem trends and 
estimates of current success rates, but to help interpret 
them we need direct data on the current experience for 
home users.  

We conducted half-day visits for contextual research 
[15] in the homes of about 50 home-users in seven 
major cities North America, Europe, and Asia. They 
provided us with work samples, inventories of software 
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on their PCs, and 
common problem 
scenarios. We 
interviewed about 
problem solving 
strategies and 
resources, the values 
that motivate home 
users, and probed for 
technical knowledge 
about computing.  

Digital photography is a 
very popular hobby for 
home users. They place 
great value their 
photos and other 
personal data but do 
not have convenient 
resources to back up 
data. Home users do 
have good problem-
solving skills for online 
tasks like shopping. But 
they are hesitant about 
problem-solving for 
online self-support due to risk of making problems 
worse or even losing their valuable personal data. 
Home users often do not understand error messages 
and commonly try to close them or ignore them. 

Home users do not typically have useful mental models 
of how their computers work. They have difficulty 
distinguishing which of the products on their PCs is 

malfunctioning and whether the problem is in hardware 
software. Consequently, they don’t know which 
company they should turn to for support. They define 
their support experience as beginning when they notice 
a malfunction and concluding with verification of its 
repair. Home users can recognize the terms and feature 
names in applications and windows.  

Figure 1: Partial schema for OMT model 
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Home users 
typically have 
internet access, 
unless the 
malfunction 
disables browsers 
or networks. Those 
cases are a fairly 
small percent, but 
when home users 
seek support the 
most common 
resources are 
family, friends, or 
someone nearby 
who provides 
support services 
for a fee.  

Our findings 
indicate that self-
support needs to 
increase in the 
awareness and 
attractiveness of 
home users’ 
decision-making. 
The online experience must compare favorably to other 
options in convenience and predictability, and by 
making a much stronger connection between the 
experience of a malfunction and the discovery of online 
content to deal with it.  

Modeling the User’s Problem 
Our objective for this step was to understand the 
problem that home users encounter with the web space 

where support content resides. We focused on how to 
characterize the problem space and how this entity 
changes state as users progress towards a solution. We 
initially chose three representative products: Xbox, 
Word, and XP, with content sets that are small, mid-
sized and large, respectively. This first group of 
products, and eventually all major home user products, 
were modeled using the TopBraid OMT 
(www.topbraidcomposer.com). 

Figure 0: Screenshot of portion of OMT model 
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Figure 1 shows a partial schema of the model for Xbox, 
which is composed of objects, operations, and 
constraints. The operations are for tasks that 
consumers attempt with Xbox, and the objects (and 
their names) are part of the consumer’s experience 
with the product. The knowledge for the user 
operations and objects was acquired by inspecting the 
UI of each product with experts. The model for each 
product provides, in effect, a high-level summary of 
product operations by users.  

Unlike conventional ontology modeling, our model is 
based on the user tasks and the features of the 
products that home users could observe. In order to 
strengthen the association between product use and 
self-support we constructed the OMT model from 
aspects of the user’s experience with the products: the 
task operations, visible objects in their experience, and 
terms that are recognizable to home users. Constraints 
and inference rules are important parts of the model, 
but they were provided from technical experts on the 
products, and not directly part of users’ experience. 
The model also defined the space of suitable problems 
for consumers to attempt self-support. The models for 
all consumer products define the problem domain, and 
later were used to assemble a network of concepts that 
serves as the user’s problem space.  

Figure 2 is a screen shot of part of the actual model for 
Xbox, as implemented in TopBraid. The model provides 
an underlying architecture for the information in the 
problem space. The model instantiates a graph, which 
is essentially a navigable network of pathways through 
the complex, interrelated objects of the product support 
domain. Support content was tagged to the terms of 
the OMT model for each product by a combination of 

automated and manual techniques. This was an 
important innovation to connect the user’s problem 
solving, the problem space, and support content, to the 
user’s experience with the product. We treated the 
problem space as an entity that users work on to arrive 
at the goal state- an intersection with the content they 
need. However, it is important to note that OMT is not 
intended for end-users. Home users interact with a UI 
that represents problem space, as described later. 

Concurrent Engineering 
A superior user-centered design can only impact users 
when it is complemented by effective technology-
centered designs for implementation with network 
communication, data management, etc. Large, complex 
systems require the effective integration of design 
efforts from several disciplines.  

Our first two steps gave us an understanding of the 
context and nature of the user’s problem before we 
made major design decisions about how users should 
discover content. As shown in figure 3, the availability 
of the OMT model allowed us to make major design 
decisions in an unconventional sequence that promoted 
interdisciplinary collaboration. The OMT provided a 
common model for multidisciplinary collaboration 
across the teams for user interface design, information 
architecture, and technical infrastructure design. The 
work in these disciplines progressed in parallel using a 
concurrent engineering method [26]. The technology 
for the user interface and the infrastructure for 
implementing it were determined at an architectural 
level in parallel. 
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Figure 3: Unconventional project flow 

 
In the following sections we explain how we chose the 
UI technology for an interactive visualization of the 
problem space, how we derived an information 
architecture from the OMT model to support the user’s 
interactions, and how we integrated design to the 
detailed level by iterating among the disciplines. 

UI TECHNOLOGY SELECTION  
The then-current system constrained the user’s task as 
a web search, however we view search as a technology, 
not as a type of user problem. In our approach the role 
of the UI is to provide an interactive representation of 
the problem space, to provide affordances to change the 
state of the space, and to provide visibility of the changes. 
Rather than the accepting the existing constraints, we 
first understood the problem space and then surveyed 
visualization technology for a suitable UI development 
tool that would allow the user to view and interact with 
the problem space that was defined in the OMT model.  

We asked our designers and analysts to think in a way 
that was constrained only by the fact that the content 
is online, and by reasonable parameters for time and 
budget. We applied Zhang’s technique for 
representational analysis [34] to the candidate 
technologies to narrow the list to those that were 
suitable to provide an interactive representation of the 
problem space. We then made our selection for one 
that could be implemented by a fairly inexpensive 
extension of the existing technical infrastructure.  

We chose the Flamenco capability for faceted 
navigation and search for our users to view and interact 
with the problem space [12; 13]. Facets in Flamenco 
work well with a browser and they enable users to 
interact with a problem space by selecting combinations 
of the facets, which represent the dimensions that 
organize the space.  

INFORMATION ARCHITECTURE 
Our information architecture provides a virtual 
organization to help users discover the content they 
need. An important factor is that support content is 
driven largely by accidental software failures in 
software products. The randomness of the failures 
makes it difficult to find organizing patterns within the 
large library of content that are understandable to 
home users. For example, if some form of cluster 
analysis were used, the contrasting dimensions might 
be interesting to a quality engineer, but are likely to 
confuse a home user. Our information architecture was 
derived from the problem space, and provided a 
structure for organizing content around dimensions that 
are understandable to home users. 
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We developed an information architecture that 
corresponds to the problem space by querying the OMT 
model. The queries were carried out using the native 
query capability in the TopBraid tool suite. The result of 
the queries formed a facet graph that governs the 
behavior of the facets. The graph required very little 
manual editing.  

Facets provide users with an understandable path 
through their problem space.  Given some user input, 
usually a mouse click on a facet the system responds 
with options that are neighbors in the facet graph. 
Facets are not strictly within the same taxonomic 
hierarchy. The facet graph is composed of thousands of 
facets and relationships among them. The definition 
and maintenance of these relationships was 
accomplished by modeling, in the OMT, via general 
business rules that were used to infer the facet-
relatedness graph.  We used an ontology-language 
representation of the associated business rules to 
produce a view of the data for use in faceted navigation 
and search. Examples of these rules include:                          
“Users interested in a product are interested in 
activities that can be done using that product.”  

“Users interested in an activity such as printing 
documents are interested in the hardware needed to do 
that activity.” 

These types of rules can be adjusted as user 
requirements change, without affecting the basic model 
of products, user tasks, and product symptoms.  

Our information architecture is virtual: It does not 
involve any changes to content. Instead, the support 
content was associated to the OMT dimensions through 

a combination of manual and automated tagging.  
Tagging consists of identifying a relationship between 
the terms of the OMT model and support content, and 
storing the results in a database. When the user selects 
a combination of facets the graph surfaces a set of 
tagged support content as results, where each item of 
content in the results set is one that was previously 
tagged, with the selected nodes.  (Any node in the 
graph can be a tag associated with some content.)  

INTERACTION DESIGN 
The management of both page navigation and results 
refinement is handled by the facet graph. The facets 
may appear as links or icons to navigate pages or as 
terms to refine results during search. In this technique 
the same facet graph integrates all user interactions 
with the problem space.  

Facets provide the user with the ability to control a 
sequence of intersecting sets. In the example of figure 
4, users first came to the home page and selected an 
icon, e.g., for security. The UI then navigated to a page 
for those products with relevant search results and 
more facets to refine the results.  

As shown in figure 4, the result page consisted of three 
primary components: (1) the facets panel on the left, 
labeled as  “Refine your results”; (2) The Search 
Results; (3) the Search box in which users can type 
additional search queries if desired. The facet panel 
provides users with an affordance to navigate and 
interact with the complex problem space by referring to 
their experience with the product. The facets’ terms 
correspond to the user’s experience with product use. 
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Users can control 
facets to create a 
sequence of 
intersecting sets in 
the problem space by 
simply clicking on 
chosen facets. With 
each selection, the 
user can either 
choose content from 
the list of results, or 
make another selection 
from the updated set of 
browsing options.  If 
the user makes another 
selection from the 
updated set of browsing 
options, the number of 
assets in the results set 
is reduced to only those 
assets that are tagged 
with all of the 
previously selected 
nodes and the newly 
selected node.  With 
each additional selection, the results set is narrowed 
further until the user is left with a very short list of 
highly relevant documents, thereby obviating the need 
to sort through a large volume of irrelevant 
information, and increasing the likelihood that the 
needed content is among the results presented. 

The facets’ behavior is driven by the information 
architecture to give users an interactive representation 
of the problem space. Users see only their current 
portion of the problem space. This is a characteristic of 

a large set of facets, which in any configuration display 
only a portion of the problem space. Even with 
substantial interaction, users may not see the complete 
space, but our test data indicate that it is not necessary 
for users to see the entire space in order to discover 
content effectively. 

Prototype for Design Validation 
The purpose of the design validation was twofold: (1) 
determine empirically whether users perform their 
procedures as intended; and (2) determine if the new 

Figure 4: facets as they appear in the results UI 

CHI 2010: Call Centers April 10–15, 2010, Atlanta, GA, USA

4535



 

design increases the success rate for content discovery 
over the then-current system (baseline). 

Facets allow users to select any permutation of terms, 
making it too difficult to conduct an evaluation with any 
type of simulated user interface. To support design 
validation we developed a functional prototype of 
software with about twenty-thousand pieces of tagged 
content using Flamenco [12; 13].  The validation study 
was a between-subjects experiment, where the 
independent variable was the version of the system: 
the prototype vs. the then current baseline version of 
the support web site. Each test condition collected data 
from twenty-two participants, who attempted same set 
of benchmark scenarios in randomized order. Each 
group had 22 participants who completed the testing. 
They were recruited from the consumer segment of a 
regional usability test services’ participant database. 
The participants were classified primarily as home 
computer users. Participants were rewarded with free 
software upon completing the study, regardless of their 
results. 

The problem scenarios were chosen from the 100 most-
frequent reported problems to call centers, across a 
variety of support-task types. Each participant’s 
computer was deliberately “broken” before they 
arrived. They were instructed to perform a task that 
would encounter the planted malfunction, e.g., “You 
want to download pictures from the web to make a 
Valentine’s Day card.” When they could not perform the 
initial task, they were asked to solve the problem of 
how to fix the computer by going to one of the two web 
sites for their experimental condition. The goal state 
was satisfied if they discovered and recognized the 

content to fix the problem. They were not required to 
actually complete the repair.  

Summary of Test Results 
The most important result from the prototype test was 
that users enjoyed a 33% increase in solution discovery 
over the baseline version  (p < 0.05). In addition, the 
prototype had 52% fewer “give-up” trials, 74% fewer 
search queries, and non-significant trends for fewer 
false-positives and fewer overall user actions. Another 
encouraging outcome was the degree to which study 
participants attended to and interacted with the facets. 
The UI induced virtually all users to follow the user 
procedures as intended, whether or not they discovered 
the solution. The only recorded measure where the 
prototype was not better was its increase for false 
negatives (p < 0.01). Recorded comments indicate this 
is probably due to users attending to the facet panel 
after the target had already appeared in the results.  

Conclusions & Discussion 
It is important to evaluate new methods for analysis 
and design with objective data. We offer here a second 
case study, this one with a measurably better design 
solution, as shown by head-to-head testing against the 
then-current system. We believe the measurable 
improvement resulted largely from understanding the 
problem independently of the means to solve it before 
making major design decision. We recognize many 
other factors could play a role in these positive results, 
such as facets or a highly skilled team. However, the 
project unfolded largely as planned and the OMT model 
played a pivotal role.  
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Conclusions for the Application  
The main conclusion for the application design is that 
technical self-support by consumers can be significantly 
improved by providing them with an interactive 
visualization of their problem space. Earlier designs for 
online self-support were based on a more narrow view 
that the users’ task was essentially to search and find 
relevant information about their problems. In our 
design the users’ task is defined more broadly as 
problem solving, which begins when they notice a 
possible malfunction. We intended facets to provide a 
representation of the problem space that allows users 
to recognize how their experience with a product is 
related to discovering the support content they need.   

Related Work 
Some forms of cognitive modeling in HCI also use 
conceptual knowledge. Cognitive modeling has been 
proposed as a technique for understanding the 
complexity of the user’s device [26].  Our use is 
different and follows the distinction proposed by Long & 
Dowell. They view interactive applications as joint 
human-machine work-systems that are constrained by 
the application domain, but separate from it [10; 22]. 
Following this framework Dowell developed a 
formulation of the cognitive design problem for air 
traffic management [11] based on a three-dimensional 
model of aircraft separation. In some important sense 
the entity of air traffic management is the preservation 
of required aircraft separations in three dimensions. In 
this manner the entity can be defined independently 
from any particular machine or system design to 
perform the cognitive work of air traffic management. 

Our use of OMT extends their concepts in several ways: 
To make a clearer connection to theory in cognitive 

science; to make the practice of design more efficient; 
and to move towards integrating HCI design with the 
other disciplines that it depends on for implementation. 
This distinction also complements conventional work 
modeling practice for HCI design, which typically 
focuses on procedural models.  

DESCRIPTIVE VS. PRESCRIPTIVE MODELS 
Conceptual modeling can be used in two ways: to 
describe how people think, or prescribe a better way for 
them to think. This distinction is also observed in 
research on decision-making, where prescriptive 
decision processes are designed to compensate for 
biases that often interfere with good practice [31]. Our 
use of conceptual knowledge modeling is prescriptive 
for two reasons. The model’s purpose is to induce more 
efficient problem solving in users than their current 
understanding allows. Also, home users could not be 
expected to know about the entire problem space in our 
model because it covers so much detail on so many 
products.  

DISTRIBUTED COGNITION AND EXTERNAL REPRESENTATIONS 
We view interactive computing is an important type of 
distributed cognition [33; 34; 35]. Ontology modeling 
was used in research on distributed cognition to 
prepare materials for problem solving experiments. By 
deriving each representation from the ontology they 
assured that each was isomorphic (logically equivalent) 
to the problem ontology.  

Our use of entity modeling is analogous. We treat the 
user interface as a form of external representation of 
the user’s problem. Our use of ontology is to assure 
that the user interface and supporting functionality 
provide an accurate, interactive representation of the 
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problem. Its value proposition is to re-distribute 
cognitive processing to be more effective [7], while not 
penalizing the user with inefficient tasks.  

More Economical Designing 
Our approach is strongly influenced by well-established 
methods for industrial engineering where complex 
human-machine systems are designed to produce 
physical products. A specification of the physical 
product that the new system must produce routinely 
drives design in industrial engineering. In an analogous 
way we used OMT to specify key characteristics of the 
entity (product) of distributed cognitive work. We call 
this approach work-centered design. 

Without a clear specification of the entity that a system 
is supposed to produce the designer is pressured to 
over-supply functions and features in an attempt to 
make certain the needed entity is among the things it 
does produce. We see this situation in the current state 
of the art for interactive software engineering. Many 
software products include features that are rarely used 
but expensive to encode. After the product is released 
the inefficiency takes a new form: un-needed functions 
and features impose a severe form of uncontrolled 
cognitive overhead on users that interferes with 
productive work. Entity models can capture important, 
stable requirements that are independent of the 
context in which the work is performed or the 
technology that assists it [4]. We believe OMT can help 
designers make better decisions about the need for 
features and functions.  

DESIGNING FOR NEW TYPES OF WORK 
The inefficiency of design is likely to get worse. Early in 
the evolution of business computing there were many 

valuable applications that automated portions of human 
work that were well understood but too time 
consuming, error-prone, etc. For these applications 
designers had the benefit of familiarity to help them 
understand the nature of the deign problem. More 
recently the value of computing has moved towards 
applications that create new forms of work that could 
not have existed without computing. Without some way 
to understand the problem that a design is supposed to 
solve the risk of project failure will likely increase. We 
believe declarative modeling of the cognitive work 
entity will become more important as computing 
invents more new, important kinds of work. 

COMPLEMENT TO PROCEDURAL WORK MODELING 
Declarative work models do not replace procedural 
models. They have a different purpose. One way they 
complement is that a declarative model of the entity of 
cognitive work should serve as the primary evaluation 
criterion for procedural models. Different design 
procedures could be compared in terms of their 
qualities, such as usability or cost. But in order to be 
comparable the procedures must produce the same 
work entity. We are currently planning research on how 
performance models [e.g., 17] can provide measures of 
efficiency to compare verified, alternate designs.  

Applicability 
Our approach was developed for interactive, technical 
problem solving. Its applicability to other types of 
cognitive work has yet to be studied. We recommend it 
for applications where a clear definition of success can 
be defined and the problem is technical, large, 
complex, and valuable. There is legitimate concern 
about the cost of such a thorough analysis, but it 
important to note that the constraints of the entity on 
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the success of a design will be in effect whether or not 
a project makes them explicit. Consequently, it can be 
far less expensive than the hit-or-miss tactics of many 
projects. It should also be valuable to managers who 
lead software projects for high-stakes systems, such as 
health-critical or safety-critical applications. 
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