

Challenges of Software
Recontextualization: Lessons Learned

Abstract
This paper describes the case of a complex and
problem-ridden software development and deployment
process: The implementation of a Campus Management
system at a large university. Based on an
understanding of software development as
recontextualization process on the technical,
organizational, human, and task level, critical factors
for success or failure are analyzed. Results show that
deficits in change management and organizational
support account for a considerable amount of
difficulties in the implementation process. Furthermore,
individual characteristics and commitment of the users
involved play a major role. Lessons learned for software
introduction processes are discussed.

Keywords
Software Development and Deployment,
Recontextualization, Participatory Design, Campus
Management Systems, Business Information Systems,
Case Study

ACM Classification Keywords
H5.m. Information Systems: Miscellaneous.

General Terms
Human Factors

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

Monique Janneck
University of Hamburg

Department of Psychology

Von-Melle-Park 11

20146 Hamburg, Germany

monique.janneck@uni-hamburg.de

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4613

Introduction
Introducing a new software system in an organizational
context is usually a delicate and difficult endeavor.
Despite extensive research on software engineering,
participatory design as well as technology adoption and
appropriation, in practice especially large software
projects are prone to be unsuccessful [e.g. 18, 20, 21].
Blowing the budget or time schedule are common
troubles. Even more severely, software may fail to
meet the requirements of the use context or meet
severe user resistance. The reasons for this are
manifold: Project planning and management might be
deficient or the software quality might simply be bad.

Moreover, a major issue that seems to be neglected
even in high-budget, prestigious software projects is
change management: The introduction of new
technology is inevitably tied to organizational and social
change, altering work processes and structures [e.g.
22]. Software projects, however, tend to focus
predominantly on technology. Managing organizational
change as such is costly and difficult. Intertwining
technological and organizational developments is even
more complex—and also under-researched in terms of
success factors and strategies.

This paper describes the case of the development and
deployment of a so-called Campus Management system
at a large European University. The software
introduction affected almost all administrative
structures and practices and revealed substantial
collisions of interest during the course of the project,
causing a lot of frustration and threatening the
successful implementation of the system.

The software project was analyzed by means of a
qualitative interview study in order to identify critical
factors for success or failure and derive
recommendations for the continuing implementation
process.

The paper is structured as follows: In the next section,
a view of software introduction as a process of
recontextualizing formalized action and the difficulties
commonly associated with it is presented. Afterwards
the research context and methodology is described.
The case study is presented in detail in the following
sections. Finally, practical lessons learned for software
recontextualization and some prospects for further
research are discussed.

Software recontextualization
Software development usually starts as
decontextualization activity: i.e., formalizing human
and/or organizational practices and ‘translating’ them
into algorithms computers can execute [19]. The term
recontextualization refers to a second ‘translation’
process of bringing these newly formalized and
computer-supported activities back into the use
context.

The notion of decontextualization versus
recontextualization emphasizes that the challenge of
software development is not only writing correct code
and providing ample functionality, but integrating new
technology into its social and organizational context (cf.
the debate initiated by Dijkstra [8]). Thus,
decontextualization is one side of the coin of software
development—recontextualization is the other.

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4614

However, in practice software development usually
focuses on the decontextualization phase. Even
software engineering methods emphasizing
prototyping, rapid and cyclical development, the
involvement of users in the design process, and
formative evaluation [e.g. 2, 3, 4, 9, 10] seldom
provide precise methods for handling the software
introduction process. Designing for recontextualization
means to address possible recontextualization problems
during software development [cf. 11] and to provide a
methodical repertoire for introducing new technology
within a (work) context, moderating its use and the
change of other (work) practices.

Generally, organizational change is often a difficult
process as it involves different stakeholders with
possibly conflicting interests who fear or actually
experience a turn for the worse. However, software
projects are specific in some regards, posing unique
challenges:

Formalizing human actions for software support often
increases standardization. While this might help to
make work processes more efficient and transparent, it
might also decrease flexibility that is needed to cover
irregular and unpredicted exceptions. Software
developers should investigate the limits of
formalization—or formalization gaps [cf. 19]—to
identify activities that cannot be processed without a
high degree of flexibility and should be automated very
carefully or not at all.

In addition, formalizing existing practices can upset
contexts and actors by shedding light on informal
(organizational) structures, processes, relations, and
hierarchies that were kept in the dark before. Thus, a

software development process might uncover already
smoldering conflicts, which are consequently attributed
to technology as a scapegoat.

Furthermore, new technology also almost inevitably
leads to the establishment of new structures and
routines. As a result, people might have to change their
habits and (work) processes or experience a change of
position or reputation, with some stakeholders
benefiting and others experiencing drawbacks.
Moreover, especially with off-the-shelf software,
decontextualization and recontextualization do not take
place exactly in the same context: The software is
implemented for an abstract or idealized use purpose
that may vary greatly from its actual use. Therefore, it
is often difficult for users to understand the underlying
design principles of the software and relate them to
their interests and tasks.

Research Context and Methods
The case study investigates the development and
deployment of a Campus Management System at a
large European university. The software
implementation was accompanied by tremendous
organizational and technical difficulties, and it was
perceived as a heavy burden by many of those
involved. Therefore, the goal of the study was to
identify factors influencing a successful implementation
and to recommend measures for improvement.

Campus Management Systems are typically complex
integrated business information systems covering a
wide range of administrative and academic processes,
such as recruiting, admission, enrollment in study
programs and courses, class scheduling, tracking
course requirements, exam results, transcripts of

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4615

records and so forth. They might even cover career
services or alumni relations, fundraising etc. Often they
are connected to learning management systems.

In the case study, the new Campus Management
System replaced several existing paper-based as well
as technology-based administrative systems,
standardizing processes to a much greater extent.
Basically all employees and students were affected by
the software introduction in some way. Many
procedures and workflows were completely altered.

Data collection and analysis
For data collection, a total of 35 in-depth qualitative
interviews were conducted to grasp the views and
experiences of a wide variety of people who were
involved the software introduction process at different
levels and in different roles. Interview partners included
administrative staff, secretaries, lecturers, research
staff, deans, project managers, technical support staff,
software developers, as well as student
representatives.

The interviews (45-90 minutes duration) were
audiotaped and transcribed literally according to a fixed
set of transcription rules that had been defined
beforehand, resulting in about 1000 pages of text. A
qualitative content analysis [12, 14] was conducted
using a post-hoc approach: A category system was
developed inductively from the data and adapted and
refined throughout the process of coding. All interviews
were coded by three independent raters. A total of
about 4200 codings were assigned to specific text
passages. About 25% of the coded interview passages
were double-coded as relating to “problems”.

The category system developed from the data fits a
slightly adapted version of Leavitt’s [13] well-known
diamond of sociotechnical interplay (fig. 1), identifying
six major categories:

Fig. 1. Adapted Leavitt diamond with percentage of codings in
the respective categories.

 “Technology” refers to the development process,
user participation, and software design (e.g.
functionality and usability).

 “Organization” refers to organizational structures
and processes, such as collision of old and new
structures and decision-making powers, and the change
management process.

 “Task” summarizes sub-categories referring to
work routines and roles.

 “People” refers to individual characteristics and
behavior of the people involved in the process, such as
competencies, individual commitment, attitudes, and
emotions.

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4616

In addition to Leavitt’s original model, data analysis
revealed two comprehensive categories that were
located in the middle of the diamond:

 “Communication” relates to information flow,
communicational styles, and effects of communication
media.

 “Support” summarizes all issues related to
technical user support services.

A quantitative analysis of codings (fig. 1) revealed
“People” as the biggest single category (24%), followed
by “Communication” (19%) and “Technology” (19%).
“Organization” makes up 15%. The smallest categories
are “Task” (8%) and “Support” (9%; miscellaneous:
6%).

About 25% of the coded interview passages were
additionally coded as relating to “problems”. The
occurrence of “problems” in the single categories
mostly resembles the original distribution, with one
exception: Only 15% of overall codings, but 26% of
problems mentioned are allotted to “Organization”—
apparently a great deal of difficulties in the software
development process is due to organizational issues
(table 1).

Table 1. Comparison of overall distribution of codings and
problem distribution.

Category % of overall
codings

% of
problems

Technology 19% 19%
Organization 15% 26%
Task 8% 7%
People 24% 23%

Category % of overall
codings

% of
problems

Communication 19% 16%
Support 9% 7%
Misc. 2% 6%

In the following sections, the results of the case
analysis are described in detail. Combining the view of
software introduction as recontextualization process
with the Leavitt diamond, the analysis is structured
along the categories of Technical Recontextualization,
Organizational Recontextualization, Task
Recontextualization, and Human Recontextualization.
The diamond is also used to graphically illustrate the
findings.

Technical Recontextualization
The development process is characterized by a rather
long period of product choice (about 20 months)
followed by a rather short process of requirements
engineering and implementation until the software was
launched (about 9 months).

This tight schedule was due to the adoption of new
Bachelor and Master study programs, which were to be
administered mainly with the new software. The tight
schedule put enormous pressure on the project.
Furthermore, many people felt that the project
management was incapable and unprofessional.

The software finally chosen among those examined
existed in an early beta version and was to be adapted
continually over several years to meet the specific
needs of the university. This long-term tailoring process

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4617

offered the chance for a truly participatory design
process. Unfortunately, however, the opportunities for
involving users in the process were hardly seized.
Despite a requirements analysis conducted by
employees of the university administration, the vast
majority of respondents said that they had not been
questioned about their particular work practices,
requirements, and needs.

Rather, user participation in the development process
was strongly dependent on users’ willingness and
abilities to involve themselves in the process and put
their views to the table instead of waiting to be asked
by the software developers.

Accordingly, two different categories of requirements
engineering measures were identified:

 Pull actions were taken by the users themselves to
gain influence on the development process. Not
surprisingly, only a small minority (n=5) reported
taking such actions (e.g. sending unsolicited feature
requests, inviting the development team to their
department, offering help). These few active users
were able to gain considerable influence within the
software development team, along with significant
decision-making powers (one interviewee called this
her “co-developer’s privilege”).

 On the other hand, the software project team
initiated push actions to involve users. About one third
of the respondents reported that they had experienced
such activities (e.g. interviews, surveys, inquiries
related to work flows).

Furthermore, the requirements investigations carried
out by the project team were mostly on a rather
abstract level, making it difficult for the respondents to
establish relations to their everyday work practices. For
example, supervisors were asked to match the roles
implemented in the software to their current staff
without truly understanding the functions of these
roles. (As one interviewee put it: “I was asked to make
a salad without knowing the ingredients”). Low-
threshold, user-activating methods like scenarios [5, 6]
were not used.

Many respondents said that user acceptance of the
software implementation and the changes that came
along with it would have been increased if more users
had been involved in the process. Since the Campus
Management system was so unpopular or even outright
rejected by its users it became an easy scapegoat for
all problems somewhat related to it, even if they were
rooted in organizational difficulties (see next section).

Furthermore, many users felt uneasy with the new
software because far-reaching administrative decisions
suddenly seemed to be made by a technical system
rather than human experts. For example, students
believed that admission decisions were automated,
which was not the case. Nevertheless, users felt to be
at the mercy of a powerful yet intransparent machine.

To sum up, technical recontextualization was flawed by
inadequate user participation. Push measures of
requirements engineering were methodically
inadequate and reached only a small number of people.
Pull measures taken by a few, but very active users
dominated the process, leading developers to the

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4618

misconception that they were in good contact with
users (fig. 2).

Fig. 2. User participation was driven by a few very active
individuals, excluding the vast majority of users.

Organizational recontextualization
The software introduction was linked with far-reaching
structural changes within the university. On the one
hand, originally independent departments were
rearranged and combined into greater units. On the
other hand, the introduction of new Bachelor and
Master study programs led to new challenges and
structures. Furthermore, the university executive board
wished to centralize and standardize administrative
processes throughout the university, which was to be
supported by the Campus Management software.

However, these structural changes were not without
conflict. “Collisions of old and new structures” form the
biggest subcategory in this area, raised by two thirds of
the respondents. The difficulties resulting from these
reorganization processes were partly independent from
the software implementation: Quite typically,
organizational change in large and heterogeneous
organizations is difficult and slow. (One interviewee

metaphorically called the university a “supertanker”,
changing track slowly and hesitantly. Quite similarly,
another respondent spoke of the software introduction
as an “iceberg” colliding with the “Titanic”, causing
quite some damage).

Many respondents expressed their understanding or
even approval that administrative and academic
processes and structures were to be simplified and
streamlined to a certain extent. However, they harshly
criticized that the changes they experienced were
shaped rather by the existing functionality and
technical possibilities of the software than justified from
an organizational point of view.

Again, most people felt that they did not have ample
opportunities to participate in the reorganization
process—either because they had not been asked or
because they lacked experience in change processes.
The latter found it difficult to foresee the consequences
that certain aspects of formalization (e.g. assignment
of roles to certain people) would have. Therefore, even
those in charge were often reluctant to make decisions.

It is interesting to note that quite contrary to the
personal experience of many respondents, a significant
number of changes requested by users were actually
implemented in the software. However, as described
above, only a small group of especially active users
were able to contribute in this way.

Furthermore, the implementation of very specialized
requests of selected user groups resulted in an increase
of overall software complexity and a decrease of actual
standardization, which had been one of the explicit
goals of the software introduction. Nevertheless, most

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4619

organizational units felt restricted and forced to give up
their well-working routines to the software.

It is interesting to mention that the technical support
service was evaluated very positively. Since the support
staff was extremely knowledgeable and dedicated they
were even able to help with organizational issues,
buffering the frustration and anger many users
experienced to a certain extent. A counterpart
delivering “organizational support services” would
probably have had a very positive influence on the
process.

In summary, organizational recontextualization suffered
from a lack of user influence on the reorganization
process. As a result, users felt that technology shaped
their organizational processes and structures, and not
the other way around. There was no explicit change
management to accompany the software introduction,
even though some difficulties were alleviated by the
very dedicated and qualified technical support service
(fig. 3).

Fig. 3. Technology shapes organization, while users experience
a lack of influence on the reorganization process and a lack of
organizational support.

Task recontextualization
A central problem related to work (re-) organization
was the implementation of access rights and user roles
within the software. Originally, for reasons of data
protection, the access hierarchy was extremely rigid,
colliding with far more flexible and often overlapping
real-world practices and roles. Some actors, e.g.
secretaries, were not modeled in the software at all,
even though they handled central tasks supported by
the Campus Management system. (For example,
professors were supposed to enter their students’
grades into the system themselves, while in reality this
was usually done by their secretaries).

Therefore, many work routines had to be altered
considerably—or they conflicted with the Campus
Management system. Furthermore, some actors
experienced forms of debasement because some of
their tasks were taken away from them or automatized
altogether. Understandably, those persons were quite
frustrated—and some of their competencies and know-
how were lost for the organization. Again, people were
especially frustrated because they felt that they had
only marginal possibilities to get involved in the
process. Quite alarming from a work psychological
point of view, the interviewees reported basically no
attempts to influence their work (re-) organization.
Quite a few of them showed signs of weariness and
fatigue. (One interviewee said: “We’re only little wheels
in a big machine, spinning round and round”).

The Campus Management software plays a tremendous
role in many employees’ everyday work. By now, many
of them spend several hours a day working with the
system. Regarding work (re-) organization, many
respondents felt that tasks became more complex and

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4620

time-consuming. Learning to use the complex software
system was difficult for many employees. Usability
problems and missing functionality further contributed
to these troubles. Thus, more than a year after the
software was introduced many employees still
experienced it as a burden rather than making their
work easier.

To sum up, again technology was experienced to shape
work practices, rather than the other way around (fig.
4). Especially the implementation of user roles and
access rights in the software turned out to be a critical
point.

Fig. 4. Technology shapes work, while users have little
influence on the reorganization of their work tasks.

Human Recontextualization
As mentioned before, human factors (the “People”
category) make up the largest proportion of codings,
because the software introduction was accompanied by
many emotions and description of the respondents’
personal situations took up much room. Furthermore,
the analysis shows that individual strategies,
commitment, hardiness, and determinedness to
participate were essential for individual involvement in

the software development process and its respective
impact.

The tight schedule of the implementation process and
the partially premature and inadequate status of the
software put a considerable burden on the staff. Many
employees did and do work extremely long hours.
Other tasks were often neglected, leading to problems
in the respective fields.

Therefore, the manner of the software introduction,
especially the timeline, was harshly criticized. While
none of the respondents doubted the usefulness of the
Campus Management software as such, the modalities
of its introduction bred frustration and impaired
acceptance. The respondents felt exhausted and
exploited and complained about a lack of appreciation
for their hard work and accomplishments: They felt that
the university administration took all their efforts for
granted.

Communication patterns further contributed to this
picture (fig. 5).

Fig. 5. Communication patterns led to conflicts.

The flow of information was uneven, and too often
important information did not reach the intended

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4621

recipients, who were frustrated and felt left out.
Furthermore, information was often spread informally.
Consequently, people who had a tight personal network
were better informed.

As described above, personal commitment and the use
of pull strategies was crucial for involvement in the
requirements engineering and software development
process. Strategies named by the respondents include
stubborn inquiries, self-initiated contacts to the
development team, the use of informal contacts and
networks, unsolicited bug reports and feature requests.
Quite generally, those who managed to get involved
studied the software development and organizational
change processes very intensively and became key
contacts for the development team, which relied on
their judgments and expertise. These key persons were
able to push and enforce quite a few special requests
for their respective departments or institutions.

Furthermore, personal attributes, competencies, and
preferences, such as time and resource management,
problem solving strategies and so forth were found to
affect individual participation and influence regarding
the software development process.

Discussion and Lessons Learned
Like in many software development and deployment
processes, tremendous difficulties and resistance
accompanied the software recontextualization
discussed here. Problems were due to a overly tight
schedule, shortcomings regarding the requirements
engineering process and user participation,
organizational difficulties such as deficits of change
management, a mainly technology-driven
reorganization process as well as deficits in

communication. Quite interestingly, purely “technical”
and usability problems (as a subset of the “Technology”
category) play a minor role in the interview reports,
even though the software still had many weaknesses.

The results presented here stem from a unique context.
Universities are surely different from other
organizations in terms of management structures and
staff. Still, the results as such reflect issues and
challenges highly generalizable to other contexts, such
as participation, change management, and
communication. In this sense, Campus Management
Systems can be seen as instances of large business
information systems, and implications drawn from this
context will most probably be relevant for other
software recontextualization processes as well.

In the following paragraphs, practical lessons learned
as well as implications for further research are
discussed.

Implications for Practice
The case study strongly emphasizes the need for joint
technical and organizational developments: A
tremendous amount of difficulties can be traced to
deficits in change management, far more than to
technical problems (cf. table 1). However, resources in
such projects are typically allocated reversely: Much
more money is usually spent on software than on
organizational development.

Likewise, the technical user support service was
evaluated quite positively in our analysis. The support
staff was well-equipped and extremely competent and
knowledgeable, while organizational change
management had to be shouldered by the respective

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4622

organizational units themselves, which were
understaffed and under-qualified for the task.
Therefore, large organizations should consider installing
an organizational support team equivalent to technical
support structures when introducing new software. Of
course that means that ample resources need to be
allocated here.

Furthermore, the case study underlines the importance
of user participation in software development projects,
as it is emphasized by the Participatory Design (PD)
tradition [e.g. 1, 17]. The case analysis also highlights
an issue that is less discussed in this research area:
The selection—or self-selection—of those to involve in
the process. The case study shows that barriers to
individual participation need to be kept very low, and
that heterogeneous user groups need to be involved.
Approaches from Distributed Participatory Design [e.g.
7] dealing with new methods of user participation in
highly dispersed, volatile, and heterogeneous user
communities might be useful in this regard.

Pull strategies in requirements engineering and support
calling for users’ own initiative should be abandoned in
favor of push strategies of developers actively
approaching users. Furthermore, such activities need to
be low-threshold and relate directly to users’ everyday
experience. They need to be thoroughly accompanied
by skilled moderators: In the case study, the
administrative staff carrying out the requirements
analysis had no former experience with the task.

Furthermore, communication processes are crucial in
two ways: One the one hand, top-down communication
(i.e. from the University executive board or project
managers to the staff) can be used to give employees a

sense of accomplishment and appraisal. In the case
study many interviewees voiced their disappointment
that they had never received a sign of appreciation.
Furthermore, a transparent and honest information
policy about what to expect from the software
introduction might appeal to people’s sense of fair play
and increase acceptance.

On the other hand, when communication is organized
deficiently, important information might simply not
reach the recipients in time or at all, especially when it
needs to travel over long organizational distances. To
ensure a vital flow of information (especially in large
organizations) communication knots and junctions need
to be defined. That means to establish responsibilities
for transferring information to certain people or units
according to a fixed set of rules, including feedback
loops to make sure the information actually reached the
intended recipient. The case analysis shows: The less
communication paths were planned beforehand, the
more communications chains were likely to break—
often without senders’ notice. Actions to take could be
as easy as setting up correct mailing lists for specific
groups.

Furthermore, senders should think carefully about when
to use what communication media. In the case study,
for example, many people preferred personal contact
over e-mail for certain requests. However, most users
were offered only standard web forms for inquiries. A
lot of information was posted on homepages or sent via
mass mailings: Again, this shows a tendency to utilize
pull rather than push strategies, which would establish
more active communication with users.

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4623

Last but not least, the software design itself suffered
from several shortcomings. Like many other business
information systems, Campus Management systems are
very complex. Regarding usability as well as flexibility
of the system it might not be advisable to formalize and
model the totality of processes in the application
domain.

In the case study, trying to model a wide variety of
particularities and exceptional cases led to an
overwhelming complexity and finally compromised the
overall operational concept and consistency of the
software. Considering the heterogeneity of
requirements and workflows that our analysis revealed
in a single organization, a flexible system allowing
users to incorporate alternative ways of doing things
might be more appropriate and efficient.

In some cases this might be reached by
individualization or tailoring options.

Nevertheless software developers should also explicitly
strive to identify formalization gaps, i.e. processes or
structures that should not be modeled in the system at
all or to a very small extent. Of course, this is deeply
intertwined with organizational developments: e.g., the
university administration might have to accept a lower
level of standardization.

The Leavitt diamond of recontextualization on different
levels proved to very helpful as an analytical tool: Using
this model, critical factors in recontextualization
processes can be evaluated and illustrated in an easy-
to-understand and descriptive way. In the case study,
the Leavitt diamond showed a strong predominance of
technology with software-driven one-way interactions,
while the goal should be to strive for a more balanced
diamond.

Table 2 summarizes main findings of the case study
and the implications that can be drawn from them.

Table 2. Summary of main findings and lessons learned.

Category Summary of main findings Critical issues and implications
Technical
Recontextualization

 Unrealistic project timeline

 Insufficient user participation

 Push measures of requirements
engineering were methodically inadequate
and reached only a small number of people

 Pull measures taken by a few, but very
active users dominated the process

 Very complex, hard-to-use software
design

 Use push strategies for user participation

 Employ low-threshold, user-activating
methods of requirements engineering (such as
scenarios, mock-ups, socio-technical
walkthroughs, user workshops etc.)

 Strive to involve heterogeneous
(especially passive) user groups

 Identify formalization gaps to avoid overly
complex or rigid software designs

Organizational
Recontextualization

 Technology-driven rather than
requirements-driven organizational
development process

 Strive for joint technical and
organizational development

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4624

Category Summary of main findings Critical issues and implications

 Lack of employees’ influence on the
reorganization process

 No explicit change management to
accompany the software introduction

 Almost no resources for organizational
development

 Establish organizational support service as
counterpart to technical support service

 Allocate ample resources to change
management

 Allow and encourage employee
participation in change management process

Task
Recontextualization

 Technology-driven rather than
requirements-driven reorganization of work
processes and tasks

 Implementation of user roles and access
rights did not match real-world conditions

 Almost no attempts of employees to
influence their work (re-) organization

 Avoid purely technology-driven changes
to work organization

 Avoid overly complex and rigid
implementations of access rights and roles

 Allow and encourage employee
participation in (re-) organization of work
processes and tasks

Human
Recontextualization

 Individual attributes, competencies, and
commitment were crucial for involvement
and decision-making power of users in the
software development process

 Employees felt overstrained and
neglected, resulting in further rejection of
the software deployment

 Account for individual characteristics of
users or user groups (e.g. different levels of
computer skills, attitudes)

 Acknowledge and possibly compensate for
employees’ additional work load

Communication Uneven flow of information

 Important information often did not
reach the intended recipients

 Predominant use of push media, such as
mass mailings

 Information was often spread informally

 Define communication knots and junctions
as well as communicational responsibilities

 Carefully choose communication media
(e.g. mass vs. personal communication)

 Balance pull and push communication

 Try to integrate informal communication
Support Highly dedicated and qualified technical

support service was able to alleviate
organizational difficulties

 Users showing proactive behavior
benefited more from support services

 Use push strategies rather than pull
strategies in user support

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4625

Implications for Research
The importance of joint technical and organizational
developments is emphasized by many researchers [e.g.
22]—albeit disregarded in practice. Therefore, more
research is needed on how to actually transfer these
findings into practice, and how to support software
developers and organizations in implementing projects
of joint technical and organizational developments. The
perspective of software introduction as
recontextualization proved useful to shift focus from
software characteristics to organizational and human
factors. Ideally, recontextualization issues should
already be taken up in the decontextualization phase of
modeling, e.g. by devising measures of how to address
challenges of recontextualization in early phases of
requirements engineering [11].

The individual characteristics of users influencing
software development processes identified in this
study—e.g. personal strategies and competencies or
relationships and networks within the organization—
have been less researched so far. This is even true for
research on technology appropriation, which focuses
mainly on the different roles people impersonate, such
as mediators, or technological champions [15, 16]. Our
analysis shows that individual characteristics influence
technology acceptance as well as the degree of
participation in the development process: Participating
users were largely self-selected. Therefore research
should focus more on users’ individual characteristics,
e.g. regarding personality traits.

As was mentioned above, methods from Distributed
Participatory Design (DPD) [e.g. 7] might prove useful
to achieve user participation in a large and

heterogeneous organization. Vice versa, results from
the case study might inform DPD research. While DPD
is investigated typically in obviously distributed settings
like online communities or virtual networks, the case
study points to another, less obvious form of
distribution: A seemingly homogeneous organizational
setting with stakeholders whose diverse interests might
only emerge over time and pose a challenge for
participatory design. Such forms of intraorganizational
distribution should be subject to further research.

References
[1] Asaro, P. M. Transforming society by transforming
technology: The science and politics of participatory
design. Accounting, Management and Information
Technologies, 10, 4 (2000), 257-290.

[2] Boehm, B. W. A Spiral Model of Software
Development and Enhancement. IEEE Computer, 21, 5
(1988), 61-72.

[3] Beck, K. and Andres, C. Extreme Programming
Explained: Embrace Change. Second Edition, Addison-
Wesley, 2004.

[4] Beck, K. and Fowler, M. Planning Extreme
Programming. Addison-Wesley, 2000.

[5] Bødker, S. Scenarios in user-centred design —
setting the stage for reflection and action. Interacting
with Computers, 13, 1 (2000), 61-75.

[6] Carroll, J. M., Rosson, M. B., Chin, G. and
Koenemann, J. Requirements Development in Scenario-
Based Design. IEEE Trans. Softw. Eng. 24, 12 (1998),
1156-1170.

[7] Danielson Oberg, K., Gumm, D., Nagsh, A. (eds).
Special Issue on Distributed Participatory Design.
Scandinavian Journal of Information Systems, 21, 1
(2009).

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4626

[8] Denning, P. J. A debate on teaching computing
science. Communications of the ACM, 32, 12 (1989),
1397-1414.

[9] Floyd, C. and Gryczan, G. STEPS - a Methodological
Framework for Cooperative Software Development with
Users. Proc. East - West International Conference on
Human Computer Interaction (1992).

[10] Floyd, C., Mehl, W.-M., Reisin, F.-M., Schmidt, G.
and Wolf, G. Out of Scandinavia: Alternative
Approaches to Software Design and System
Development. Human-Computer Interaction, 4, 4
(1989), 253-350.

[11] Gumm, D. and Janneck, M. Requirements
Engineering for Software Recontextualization. Proc.
IRIS 30, Department of Computer Sciences, University
of Tampere, Finland (2007).

[12] Kvale, S. InterViews: An introduction to qualitative
research interviewing. Sage, Thousand Oaks, 1996.

[13] Leavitt, H.J. Applied organizational change in
industry: structural, technological and humanistic
approaches. In March, J. G. (ed), Handbook of
organizations. Chicago: Rand McNally, 1965.

[14] Miles, M. B. and A. Huberman. Qualitative Data
Analysis: An Expanded Sourcebook. Sage, Thousand
Oaks, 1994.

[15] Orlikowski, W.J., Yates, J., Okamura, K. and
Fujimoto, M. Shaping Electronic Communication: The

Metastructuring of Technology in the Context of Use.
Organization Science, 6, 4 (1995), 423-444.

[16] Scheepers, R. Key role players in the initiation and
implementation of intranet technology. Proc. IFIP WG
8.2. Boston: Kluwer (1999), 175-195.

[17] Schuler, D. and Namioka, A. Participatory Design:
Perspectives of Systems Design. Lawrence Erlbaum
Assoc, 1993.

[18] Shenhar, A.J., Tishler, A., Dvir, D., Lipovetsky, S.
and Lechler, T. Refining the search for project success
factors: a multivariate, typological approach. R&D
Management 32, 2 (2002), 111-126.

[19] Simon, E., Janneck, M. and Gumm, D.
Understanding socio-technical change: Towards a
multidisciplinary approach. In J. Berleur, M. I.
Nurminen & J. Impagliazzo (Eds.), Social Informatics:
An Information Society for all? In remembrance of Rob
Kling. Boston: Springer (2006), 469-479.

[20] Standish Group. Extreme CHAOS. Standish Group,
USA, 2001.

[21] Torp, O., Austeng, K. and Mengesha, W.J. Critical
Success Factors for Project Performance: A Study from
Front-End Assessments of Large Public Projects in
Norway. Proc. NORDNET, 2004.

[22] Wulf, V. and Rohde, M. Towards an Integrated
Organization and Technology Development. Proc of the
Symposium on Designing Interactive Systems, New
York (1995), 55-64.

CHI 2010: Software and Methods April 10–15, 2010, Atlanta, GA, USA

4627

