
Automating UI Guidelines Verification
by Leveraging Pattern Based UI and
Model Based Development

Abstract
In large enterprises different teams work on different
parts of a big software application. Therefore, retaining
user interaction paradigms and concepts becomes
important. However, during the development of a large
software product, these principles and paradigms get
progressively diluted, due to trade-offs, differences in
interpretation, communication errors and many other
reasons. In order to remain true to design rationale and
communicating them to a wider audience/consumers,
often User Interface (UI) Style Guide are created. The
style guide attempts to sensitize and educate its
consumers about design principles and document some
of these design rationales for references.

However, the usability, usage and adoption of these UI
guidelines within an organization are topics frequently
discussed and debated in several forums for years.

Post the ‘design and definition phase’ of software
development lifecycle, UI designers are often required
to do ‘quality checks’ as the UIs get developed. Despite
painstakingly defining every interaction to its finest
level of granularity, in practice the guidelines are often
not followed or interpreted incorrectly.

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

Satya Viswanathan
SAP AG
Dietmar-Hopp-Allee 16
69190 Walldorf, Germany
satya.viswanathan@sap.com

Johan Christiaan Peters

SAP AG
Dietmar-Hopp-Allee 16
69190 Walldorf, Germany
Johan.christiaan.peters@sap.com

CHI 2010: Users and Attention on the Web April 10–15, 2010, Atlanta, GA, USA

4733

mailto:satya.viswanathan@sap.com
mailto:Johan.christiaan.peters@sap.com

The method of manually inspecting the ‘implemented’
user interface for compliance to UI guidelines has the
following pitfalls:

Highly effort and time consuming

Outcome is often inaccurate, unreliable and sub-
optimal in quality

Findings are too late in the process to be fixed.

Not an efficient process for tracking issues to
resolution

This case study talks about the challenges we faced
with our UI Style guide and how we tackled them.
Based on internal user research and design thinking we
defined an approach of better integrating UI style guide
into the software design and development process. We
leveraged the benefits of pattern based UI approach
and a model based development environment to
achieve compliance to our UI guidelines by:

Providing tools to automate verification of UI
guidelines in the model based development
environment

Redefining the development process to support UI
verification early-on during the design and development
process

Keywords
Graphical User Interfaces, Usability Evaluation
automation, Style Guides, Standards & Guidelines,
Model based user interface design, Usability

ACM Classification Keywords
Categories and subject descriptors: H.5.2 [Information
interfaces and presentation (e.g., HCI)]: User
Interfaces---Evaluation / methodology, Style Guides

General Terms
Design, Documentation, Experimentation, Human
Factors, Reliability, Standardization

The Basic Framework
While developing our large business software suite we
need to cover a huge number of business scenarios,
uses cases, thus needing many different screens. Our
final application has about 4000 screen. Starting in
2001, we adopted the approach of Christopher
Alexander [1] and developed a generic UI pattern
model [2, 3]. Our expectations from adopting a pattern
based model were:

Reduce production costs: Once a UI pattern has
been developed it just can be re-used and only needs
be configured according to the business process thus
simplifying and accelerating the development process.

Increased UI consistency across different business
scenarios

Reduced learning curve for end users

A pattern based UI approach also introduced model
based development environment. We decided to de-
couple the creation of screens from the development of
the underlying business logic. With this combination,
we could do a lot of upfront product definition, working
on prototypes, before actual implementation started.

CHI 2010: Users and Attention on the Web April 10–15, 2010, Atlanta, GA, USA

4734

The idea of using patterns for UI design has been
described already by Borchers [4]. To begin with, we
went down the conventional path of defining generic UI
patterns for our product too: e.g. object Work Lists
(OWL), Contextual Navigation Pattern, Identification
Region, Forms, Tables, and so on. Each pattern served
a specific function. For example, the OWL shows a list
of all objects the user is responsible for. The
interactions within these UI patterns were standardized
at a generic level. E.g. ‘selection’ of an object in an
Object work list; a toolbar that provided generic,
possible actions that can be done on a selected object
etc.

Apart from these UI patterns, we defined some generic
‘work spaces/ window types’ (we called them Floor
plans) in which these patterns could be used.

User Centered Design
Contrary to expectations, this basic framework did not
limit ‘creativity’ and ‘user centeredness’ of the product.
In fact the time designers saved by following a pattern
based approach allowed them to do more upstream and
core design tasks. Extensive user research provided
vital information for extending the base framework;
refining the generic ‘patterns’ (based on the
understanding of how users perform their tasks) or
defining new patterns (catering to new use cases)

A combination of UI controls and floor plans created
user centric patterns that can be further reused. E.g.
including a ‘search control’ with the OWL became a
standard pattern to allow the users to search within the
list of objects.

The Style Guide
The principles behind the basic framework; the
patterns; their usage; best practices and examples
were documented in our UI Style guide. This enabled all
the stakeholders – UI designers, solution managers,
and technical authors, developers – to have a common
understanding of the design principles and to apply
patterns and floor plans in a same way.

In principle, patterns were a set of guidelines/ best
practices based on our understanding of our users and
how they performed their generic tasks. However,
owing to the complexities of integrated enterprise
software, dealing with vital business data, it was not
enough for us to define the ‘patterns’ at a design level,
targeted at only the UI designers.

We had the following additional layers of complexities:

The UI style guide was consumed by UI designers,
UI developers and in some cases, the business
analysts. Unlike the Yahoo Design Patterns library
(targeted primarily at designers), we needed to provide
further details, addressing needs of multiple
consumers.

Every design pattern was a consolidation of
multiple ‘controls.’ The interactions, behavior and visual
design of these were defined centrally.

Often, we had dependencies on ‘interaction
possibilities’ with a control, based on the type
of business content; the business process.

UI Designers could define ‘variants’ of ‘usage’ of these
patterns depending on their end user needs and use
cases. However, it posed a challenge downstream when
we moved into the ‘production’ phase.

CHI 2010: Users and Attention on the Web April 10–15, 2010, Atlanta, GA, USA

4735

The development communities found it hard to
comprehend the finer points of the style guide, because
they had not been part of the initial the user research
and the resulting situational scenarios. This was difficult
due to our distributed development set up. The
following examples illustrate aspects of UI guidelines
that were not understood by developers:

If sub-views are used, there should be at least 3. If
there are 2, consider redesigning the screen. Avoid
using more than 7 sub-views. (Developers were not
sensitive to such numbers/ heuristics of +/- 7)

Provide sub-views only if the selected view has
additional sub-categories that warrant a separate
navigational element. (Developers had different
decision parameters of warranting a separate
navigation element. For example, they would decide
based on the complexities of having separate
navigational elements in the backend
architecture/code.)

Multiple ‘flavors’ of ‘Save’ buttons – to address
different use cases: There were times when the end
user wanted to simply edit (master) data and ‘Save’.
Other times, the end user desired to create/edit data
and expected to ‘trigger a workflow’ in the background.
In such scenarios, the UI guideline recommended to
name the button with an appropriate ‘action’ label
instead of a simple save. (In the backend, the
Developers could program either buttons to behave in
the appropriate manner – the change in label was not
important for them)

This led to the development community rejecting the
document as a reference and applying their own

logic/creativity to the User Interfaces they were
developing – resulting in ‘inconsistencies’ across
thousands of developed User Interfaces.

During the course of development, the teams ran
into various constraints and exceptions which called for
different design proposals. Owing to the model based
development environments, most often, these
constraints and exceptions were limitations on a
framework/landscape level. However, (due to various
reasons) each team took different approaches to work
around them.

The User Experience (UX) team was now posed
with an additional challenge to ensure these ‘work
around designs’ were consistent. We were forced to
document the design proposals for exceptional cases
into our Style Guide hoping that every team facing
similar issues will use a common approach.

The development community had created their own
‘instant’ (UI) fixes for their technical constraints. By
this, we learnt, that the UI style guide needed to
include, “what NOT to do” aspects too.

The (already) 500 pages Style Guide grew even
bigger – turning it unusable.

The Production Phase
This phase of software development tends to be rather
‘industrial’ in nature – thousands (in the range of 4000)
of screens had to be produced, by thousands of
developers, hundreds of stakeholders working across
multiple geographical locations. This called for
increased process orientation, high degree of
standardizations and repeatable processes. Also, such
large scale production demands a strong quality
assurance & control processes.

CHI 2010: Users and Attention on the Web April 10–15, 2010, Atlanta, GA, USA

4736

While our (UX team) intentions were noble, the UI Style
Guide was not a widely read document by developers
and/or other consumers.

It is not considered a relevant document for their
core tasks – coding, testing etc.

It did not speak the language they understand –
the syntax, the terminologies etc. Instead spoke of
‘design principles’; recommendations/best practices –
things that are seemingly farfetched for the community

It did not instantly provide them with answers they
seek – answers to their constraints and exceptions

The voluminous style guide was hard to
comprehend

A good number of inconsistencies arose during the
transformation of wireframes into implemented screens
due to various reasons.

Technical constraints

Globalization requirements

Specific business process requirements

Requirement based on specific end user needs

Assumptions made by stakeholders as the UI
Guidelines were too generic.

Compliance to legal standards

Towards the end of the production/development phase,
we found ourselves in a quality nightmare. There were
too many inconsistencies in our user interfaces – some
of them of course were seemingly justifiable, but many
were not.

Figure 1. Inconsistency example: The box in ‘green’ illustrates
the prescribed/desired labels for the fields in a Form. The
boxes in ‘red’ illustrate the different variations we had.

The ‘Clean Up Mission’
We (UX team) along with others in the team, became
full time quality controllers. We did UI wall walks,
scenario comparisons, manual UI reviews, UI testing on
test systems, issue reporting, issue tracking,
escalations…all of which can be categorized as ‘quality
control’ tasks – not ‘design’ tasks.

The production/development phase is also a very
unstable one. As the development framework and
landscape issues got resolved centrally, we had new
situations to tackle. E.g. our guidelines for work around
designs need to be updated almost continuously.

Issue categories were understood differently by
different people.

The quality control team came in too late. This
team could only test once the developers completed
development, published their models and the product
was ‘officially’ in ‘testing’ phase.

Until the start of the ‘testing phase’ our primary
task was only identifying and documenting UI issues.

CHI 2010: Users and Attention on the Web April 10–15, 2010, Atlanta, GA, USA

4737

Finally, during the ‘correction phase’ developers
were overloaded with a long list of issues that included
UI inconsistency issues plus other technical issues.

Invariably, against the light of technical issues, UI
issues were placed much lower in priority, often
resulting in them not being resolved.
At one point, the entire organization was spending too
much time and effort on such tasks and rework than on
our respective core tasks.

The ‘(in) consistency’ issue
The definition of consistency and to what level this
consistency should be attained is often a debatable
topic. It is a struggle to define a basis for consistency
that does not come in the way of ease of use and
consistency that does not stifle innovation and good
user centered design. Considering we were faced with a
high number of ‘UI inconsistency’ issues, it was
important for us to define what ‘inconsistency’ meant
for us and where to draw the line.

We refer to Jonathan Grudin’s article on ‘The Case
against User Interface Consistency’ [5] for the three
categories of ‘consistencies’ described by him.

Internal Consistency: Consistent interaction
paradigm within a product/across product lines (e.g.
Window handling, key functions/buttons, terminology,
layout etc) Initial learning in particular, but also ease of
use and perceived quality are reported to benefit from
internal consistency.

External Consistency: Consistent with user’s
conceptual model (of previously used similar systems).
Full external consistency may not generally be possible.
“Transfer of training” is then a key concern.

Consistent with metaphoric correspondence of
design features in the world beyond computer systems.
Since real-world domains are part of everyone’s
experience, analogies may be significant aids to initial
learning and recall

Our UI Style guide combined design guidelines,
consistency recommendations and rules relating to all
consistency categories, however a closer look at our ‘UI
inconsistency’ issues, revealed that majority of our
issues were related to internal inconsistencies.

Why were internal inconsistencies so important for us?
Our product provides integrated enterprise software
dealing with vital business content and processes
spanning multiple functional areas – Supply Chain
Management; Financials; Supplier Relationship
Management; Customer Relationship Management;
Human Resources. Different groups spread across
different locations focus on developing their functional
area. Typically the team members are functional
experts of their respective areas.

Our user research data indicates that our end user
often multi-task – work across these functional areas.
Example, a single end user could be responsible to
work with Financials as well as some parts of Human
Resources areas.

‘Consistent interaction paradigms’ are therefore very
important to make this integration between functional
areas feel seamless and retain a strong brand value.

CHI 2010: Users and Attention on the Web April 10–15, 2010, Atlanta, GA, USA

4738

Figure 2. Inconsistency example: We had multiple variations
of how ‘Add Row’ feature worked. In some cases, the new row
was created to be displayed as the first one; other cases, it
was displayed to be the last row but was selected by default.

Our Objectives
Our primary goal was to substantially reduce the effort
spent within the organization in verifying the user
interfaces for internal consistency and compliance to
our UI Style Guide. We had several aspects to address:

Define a methodology to proactively avoid/correct
UI problems early on in the development process

Leverage the benefits of a model-based
development environment – provides additional context
(meta-model) that can be used by verification tools to
check guidelines with increased accuracy (e.g.
guidelines distinguishes look-and-feel for a table control
that lists a set of tasks from a table control that lists a
set of items).

Reduce the need for developers and designers to
remember every little detail of the UI Style Guide.

Improve overall internal consistency

Improve compliance to UI Style Guide

Reduce the MANUAL effort spent by everyone in
order to achieve consistencies and compliance.

Our Approach
Given the situation and its scale of operation, we opted
to experiment with automation to meet our objectives.

We wanted to explore the possibilities of creating a
check/verification tool that could be integrated into the
development tool used by our developers. The basic
expectation was to run an automated check against
some UI rules directly within the development tool and
generate a report that illustrates the results.

We were aware that design guidelines cannot be
completely automated. Hence it was important for us to
make a distinction and define those that could be. As a
first step, we separated the ‘standards’ (overall, generic
pattern descriptions) from the ‘guidelines’ (application
specific rules and recommendations).

Within these guidelines were consistency rules and
recommendations that related to internal and external
consistencies. Since external consistencies are more
dependent on specific use cases, user needs, we
decided to exclude external consistency guidelines from
automation. We trusted that our upfront product
definition phase following user centered design process
and later, usability testing would address these
sufficiently.

We laid our focus on internal consistency guidelines and
further filtered out ‘recommendations’ from the ‘rules’

We classified those guidelines, violations of which
would cause serious break down to end user’s task
completion efficiency and effectiveness as ‘rules.’ Using
the same principle, we defined priorities to rules.

CHI 2010: Users and Attention on the Web April 10–15, 2010, Atlanta, GA, USA

4739

Priorities were assigned to the rules in order to decide
how critical it is to fix a violation of the rule. If, due to a
violation of a rule, a user will not be able to complete a
task successfully (for e.g. a missing ‘close’ button) it
was marked as ‘High’. If the user can complete the
task, albeit with some cognitive effort it was rated as
‘Medium’ (for e.g. ‘close’ button not placed in the
correct position of the screen). If the violation does not
impact user’s performance but affects the overall
emotional appeal or perceived usability, these rules
were marked as ‘Low (for e.g. duplicate header or
title).

We could define approximately 350 distinct rules.

The development group used these rules as source for
developing a formal method of verification using a rule
engine. Owing to our model based development
environment and de-coupling of UI from its underlying
logic, it was also important to distinguish rules that
check the presentation model versus rules that check
the navigation model. Guidelines for the presentation
model such as layout (font, size and position), grouping
(forms and sections) could be verified in the
development environment and would ideally not require
verification at runtime. Guidelines for the navigational
model could only be checked at runtime (e.g. check if a
hyper link on an employee name actually opens a
popup of the correct type). The verification tools were
built to verify both kinds of guidelines.

The low hanging fruits

Since we made a distinction between checks on
‘presentation model’ Vs check of ‘navigation model’ the
checks on presentation model could be done earlier.

Developer’s dependency on the quality team
reduced as developers could now trigger UI verification
themselves by a click of a button in their development
environment; they could view a report that showed UI
‘inconsistency’ issues with their ratings; these issues
could be fixed by the developers during development.

The quality assurance group too could do these
checks early on by triggering verifications centrally on
nightly builds.

Reduced overhead of time, effort and
communication delays faced during manual testing.

Reduced the burden of learning granular details of
the UI guidelines; its updates. Rolling out new updates
of these guidelines became easy – we only needed to
update the rules/ add new rules/ remove old rules.

Enhanced ‘reporting’ capabilities increased
transparency of the entire process, early on.

Essential Learning

(Most significant) Automated inconsistencies
checking, freed designers to invest their efforts on
higher level design improvements, user research and
user validations rather than focusing on guideline
compliance. This allowed the UI designers to once again
focus on their ‘core’ tasks.

The combination of ‘pattern based UI approach’
and ‘model based development environment’ provides a
framework to cover more number of guidelines.

Development productivity and quality of end
product significantly improved with a proactive
methodology to fix UI issues.

It is important to make distinctions between:

CHI 2010: Users and Attention on the Web April 10–15, 2010, Atlanta, GA, USA

4740

Standards versus detailed product specific
guidelines.

External inconsistencies guidelines versus
internal inconsistencies guidelines.

Checks on Presentation model versus
checks on navigation model

After applying all these filters, approximately
60% of our UI Style guide could be categorized
into ‘internal consistency’ and be translated
into rules to be automated.

Several organizational challenges such as buy-in
from management, coordinating deliverables and
managing expectations of people were hard to handle.
However, close and frequent interactions with different
stake holders helped. We (the UX team) become the
linking pin connecting different people and perspectives
together. This also gave the User Experience group to
play a persuasive and influential role in the process [6].

An attempt at formalizing the guidelines into rules
which could be tested revealed grey areas in the UI
style Guide that were not clear and needed rewriting.
These areas did not become apparent earlier.

As user interface design guidelines are never
exhaustive, it never covered all edge cases that needed
an exception to following the rule. We previously
struggled on documenting and updating such
exceptions and edge cases into our UI style guide, with
the risk that it may not be read/ maybe overlooked.
Automation allowed us to directly enter these rules into
the engine and making it available for verification.

Increased and early transparency of UI
inconsistency issues gave us sufficient lead time to
resolve them appropriately

This approach made it possible to instill a level of
discipline without compromising on the flexibility
required for creating user centric design solutions for
our business cases.
Summing it up, the key achievement is that this
approach allows us to be faster and better in our tasks
– an increasingly growing demand in the industry.

Related Work

We looked at the Yahoo Design Patterns Library
extensively. Our goals were similar: increase
consistency, predictability, and usability across
applications. However, we soon realized the
differences:

The Yahoo Design Patterns library
documented design aspects of patterns and
was targeted primarily at designers. Our UI
Style Guide had varied consumers.

Since Developers were big consumers of our
Style Guide we needed a lot more details with
respect to right ‘usage’ of these patterns. E.g.:
A team of Developers once experimented
having Bread Crumb Navigation inside an
Accordion view. Upon design review, this usage
was considered inappropriate.

We would need to clearly specify the usage of
Progress Bar in different types of windows –
modal; non-Modal windows. Such details could
have implications on data handling.

Owing to the different types of business
content we handled, there were many
‘conditional’ aspects to our UI guidelines. These
needed detailed specifications; instructions and
often ‘what not to do’ aspects too.

CHI 2010: Users and Attention on the Web April 10–15, 2010, Atlanta, GA, USA

4741

There are many web usability and accessibility
verification tools in the market that address compliance
to widely accepted set of guidelines (such as WCAG and
Section 508 Web Accessibility Standards). However
they do not provide a way to define and check
organization specific UI guidelines

Ivory and Herst’s survey [7] indicates that most of
the usability validation tools do quantitative analysis of
the user interface based on end user’s usage patterns.
The analysis exposes fundamental issues in design
arising mostly from low performance. While it may help

improve the design, it cannot support a qualitative
analysis of the user interface based on guidelines

It has proven to be hard to formalize informal style
guides written in free flowing text in design time tools.
This opinion is frequently discussed and debated in all
major forums including SIGCHI.

There has been only one work so far [8] that
leverages the benefits of a modeling environment to
check for UI guidelines compliance.

Acknowledgements
The methodology was developed by the user
experience group under the hat of innovative ventures.
This couldn’t have been a success without close
collaboration with the development and quality groups
and support from the management. We thank all who
contributed for the success of this initiative.

References

[1] Alexander, C. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press, New
York, 1977.

[2] Waloszek, G. and Eberleh, E. Introduction to User
Interface Patterns at SAP, 2003.
http://www.sapdesignguild.org/community/design/patt
erns_sap.asp

[3] Arend, U. User Interface Patterns Components for
User Interfaces, 2004.
http://www.sapdesignguild.org/editions/edition8/patter
ns.asp

[4] Borchers, J. A Pattern Approach to Interaction
Design. Willey Series in Software Design Patterns,
Wiley, 2001.

[5] Jonathan Grudin: The Case Against User Interface
Consistency, Communications of the ACM, October
1989, Volume 32
[6] Wilson, C. How Can Usability Practitioners Be More
Persuasive?, Interactions, ACM Press (2007) 44 – 47
[7] Ivory, M.Y. and Hearst, M.A The State of Art in
Automated Usability Evaluation of User Interfaces, ACM
Computing Surveys, Volume 33, ACM Press (2001) 470
– 516
[8] Atterer, R. Model based Automatic Usability
Validation NordiCHI 2008, ACM Press (2008) 1 – 14
(section 4)
Increasing Design Buy-In Among Software Developer
Communities: CHI 2008, April 5–10, 2008, Florence,
Italy ACM 978-1-60558-012-8/08/04.
Branding the Feel: Applying Standards to Enable a
Uniform User Experience: CHI 2008, April 5 - 10, 2008,
Florence, Italy ACM 978-1-60558-012-8/08/04

CHI 2010: Users and Attention on the Web April 10–15, 2010, Atlanta, GA, USA

4742

http://www.sapdesignguild.org/community/design/patt
http://www.sapdesignguild.org/editions/edition8/patter

