

d.note: Revising User Interfaces Through
Change Tracking, Annotations, and Alternatives

Björn Hartmann1, Sean Follmer2, Antonio Ricciardi2, Timothy Cardenas2, Scott R. Klemmer2
1–Computer Science Division

University of California, Berkeley, CA 94720
bjoern@cs.berkeley.edu

2–Stanford University HCI Group
Computer Science Dept, Stanford, CA 94305

srk@cs.stanford.edu

ABSTRACT
Interaction designers typically revise user interface
prototypes by adding unstructured notes to storyboards and
screen printouts. How might computational tools increase
the efficacy of UI revision? This paper introduces d.note, a
revision tool for user interfaces expressed as control flow
diagrams. d.note introduces a command set for modifying
and annotating both appearance and behavior of user
interfaces; it also defines execution semantics so proposed
changes can be tested immediately. The paper reports two
studies that compare production and interpretation of
revisions in d.note to freeform sketching on static images
(the status quo). The revision production study showed that
testing of ideas during the revision process led to more
concrete revisions, but that the tool also affected the type
and number of suggested changes. The revision interpreta-
tion study showed that d.note revisions required fewer
clarifications, and that additional techniques for expressing
revision intent could be beneficial.

Author Keywords
Interaction design tools, prototyping, revision, annotation.

ACM Classification Keywords
H.5.2. [Information Interfaces]: User Interfaces –
prototyping. D.2.2 [Software Engineering]: Design Tools
and Techniques – state diagrams; user interfaces.

General Terms
Design, Human Factors.

INTRODUCTION
Interaction design teams oscillate between individual work
and team reviews and discussions. Team reviews of user
interface prototypes provide valuable critique and suggest
future design directions [25, pp. 374-5]. However, proposed
changes can rarely be realized immediately: the proposer
may lack implementation knowledge, the changes may be
too complex, or the ideas are not sufficiently resolved.

In many areas of design, annotations layered on top of
existing drawings and images, or “sketches on top of

sketches” [3], are the preferred way of capturing proposed
changes. They are rapid to construct, they enable designers
to handle different levels of abstraction and ambiguity
simultaneously [4], and they serve as common ground for
members with different expertise and toolsets [27].
Individual designers later incorporate the proposed changes
into the next prototype. This annotate-review-incorporate
cycle is similar to revising and commenting on drafts of
written documents [26]. While word processors offer
specialized revision tools for these tasks, such tools do not
exist for the domain of interaction design.

This paper demonstrates how three primary text revision
techniques apply to interaction design: commenting,
tracking changes, and visualizing those changes. It also
introduces revision tools unique to interaction design:
immediate testing of revisions and proposing alternatives.
Because interaction design specifies both appearance and
behavior, revisions should be testable immediately when
possible. Because enumeration and selection of alternatives
is fundamental to design [3,10,15,32], revisions should also
be expressible as alternatives to existing functionality.

The proposed revision techniques are embodied in d.note
(Figure 1), a tool for interaction designs created with d.tools
[11]. The d.note notation supports modification, comment-
ing, and proposal of alternatives for both appearance and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

Figure 1. d.note enables interaction designers to revise
and test functional prototypes of information appliances.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

493

behavior of information appliance prototypes. Concrete
modifications to behavior can be tested while a prototype is
running. Such modifications can exist alongside more
abstract, high-level comments and annotations.

This paper also characterizes the benefits and tradeoffs of
digital revision tools such as d.note through two user
studies. We show that the choice of revision tool affects
both what kind of revisions are expressed, as well as the
ability of others to interpret those revisions later on.
Participants who used d.note to express revisions focused
more on the interaction architecture of the design, marked
more elements for deletion, and wrote fewer text comments
than participants without d.note. Participants that inter-
preted d.note diagrams asked for fewer clarifications than
participants that interpreted freeform annotations, but had
more trouble discerning the reviser’s intent.

In the remainder of the paper, we discuss related work,
survey today’s UI revision practices, and describe revision
principles from related domains. We then introduce d.note
and its implementation. We present results from two studies
of revision expression and interpretation, and conclude with
a look at the larger design space of revision tools.

RELATED WORK
d.note draws on existing work in four areas: annotation and
revision tools, difference visualization techniques, design
histories, and informal design tools.

Annotation Tools
Change tracking and commenting tools are pervasive in
word processors. Such functions enable asynchronous
collaboration, where different members may have different
functions, such as author, commenter, and reader [26].
d.note applies change tracking and commenting to the
domain of interaction design. It takes inspiration from tools
that capture sketched comments and interpret these as
commands to change an underlying software model. In
Paper Augmented Digital Documents [7], annotations are
written on printed documents with digital pens; pen strokes
change the corresponding digital document. In ModelCraft
[30], users draw on physical 3D models created from CAD
files, to express extrusions, cuts, and notes. These annota-
tions then change the underlying CAD model.

Capturing Design History
Design histories capture and visualize the sequence of
actions that a designer or a design team took to get to the
current state of their work. The visual explanations tend to
focus on step-by-step transformations, e.g., for web site
diagrams [18], illustrations [19,31], or information
visualizations [13]. Revision tools such as d.note focus on a
larger set of changes to a base document version, where the
order of changes is not of primary concern. Design histories
offer timeline-based browsing of changes in a view external
to the design document; d.note offers a comprehensive view
of a set of changes in situ, in the design document itself.

Comparing Alternatives
Design histories and d.note track changes while they are
made at design time. Another approach is to compute and

visualize differences of a set of documents after they were
edited. The well-known diff algorithm shows differences
between two text files [14]. Offline comparison algorithms
also exist for pairs of UML diagrams [6] and for multiple
versions of slide presentations [5]. The d.note visual
language is most closely related to diagram differencing
techniques introduced for CASE diagrams [24] and for
statecharts [9] in the Kiel Integrated Environment for
Layout [28]. Such research contributes algorithms to
identify and visualize changes. d.note contributes interac-
tion techniques to create, test, and share such changes.

Informal Design Tools
Prior work has demonstrated techniques for designers to
sketch GUIs [20], web sites [22], and multimedia content
[2]. TEAM STORM [8] enabled collaborative sketching for
multiple co-located participants. Topiary [21] exported
sketched interfaces to mobile devices and allowed sketched
comments as a secondary notation in the editor. d.note
builds on these sketching techniques and contributes a
sketch-based visual language for revising interfaces.

SUEDE [17] and d.tools [11] introduced the concept of
integrating design, test, and analysis in a single authoring
environment. We are inspired by the approach to explicitly
add support for the larger context of design activity into a
prototyping tool. The two prior systems focused on user
testing; d.note focuses on design revision.

SURVEY OF CURRENT TOOLS AND PRACTICES
In this section we review current UI revision practices, and
discuss related tools from other domains of creative work.

UI Revision Practices Today
We contacted practitioners to find out how interaction
design teams currently communicate revisions of user
interface designs. Ten designers responded through a
professional mailing list; seven of them shared detailed
reports. There was little consistency between the reported
practices — techniques included printing out screens and
sketching on them; assembling printouts on a wall;
capturing digital screenshots and posting them to a wiki;
and using version control systems and bug tracking
databases. We suggest that the high variance in approaches
is due to a lack of specific tool support for UI designers.

We also noted a pronounced divide between physical and
digital processes [16]. One designer worked exclusively on
printouts; four reported a mixture between working on
paper and using digital tools; and two relied exclusively on
digital tools. To make sense of this divide, it useful to
distinguish between two functions: recording changes that
should be applied to the current design; and keeping track
of multiple versions over time. For expressing changes to a
current design, five of the surveyed designers preferred
sketching on static images because of its speed and
flexibility. In contrast, designers preferred digital tools to
capture history over time and to share changes with others.
We hypothesize that designers will benefit from tools that
bridge the gap between capturing changes and tracking
history.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

494

R
I
o
a
t

T
T
h
o
F
d
th
v
O
c
v
d
a
m
f

S
S
e
s
r
ta
in
th
c
a

V
W
s
r
c
s
d
i.
a
th
d
li

C
f
s

1

2
3
4

A
G
a
n
[

Revision Pract
nteraction desi

of applications
aspects, we can
extual docume

Text Document
The fundament
history-preserv
operation has tw
For example,
deletion is strik
he semantics a

version of the
Original and m
communicate th
visually disting
documents col
author, comme
modify the text
further modific

Source Code D
Source-code r
editors, enable
side-by-side [1
revision tools,
ally, but comp
n source code
hey are part

commenting (c
available at the

Visual Media
WYSIWYG do
source and fina
representation.
comment direc
source. In con
developers con
.e., rendered vi

address change
he preferred m

domain is a co
imited to static

Comparing th
formulate four
support the foll

1. History-pre
source repr

2. Commentin
3. Sketching
4. Revising t

screens, no

A VISUAL GRA
Guided by our
available in oth
notation for use
11], a visual

tices in Other
igners are conc

s [25]. Absent
n draw on im

ents, source cod

ts
tal actions in w

ving modificat
wo component
a common i

king through th
are to remove
document, sho

modification a
he nature of a
guished from th
llaboratively,

enter, and reade
t as well as add
cation serves th

Documents
revision tools
users to compa
12] (Figure 3
changes are ge

puted and visua
differ from co

t of the sou
comments abo
e level of an ent

ocument editor
al document; a
For program s

ctly on the ou
ntrast, movie

nvey revisions
ideo frames (F

es in appearanc
method of expr
ompelling app
c content [3].

ese three ex
design princip

lowing:

eserving incre
resentation
ng outside the
as an input mo
the output, i.e
ot just the sourc

AMMAR FOR R
r assessment
her domains, w
er interface pro
authoring env

Domains
cerned with bo
a complete s

mportant insigh
de, movies, and

written docum
tion and com
ts: visual synta
interlinear syn
he deleted tex
the stricken te
ould the revisi
are visible sim
change. Furthe
he base versio
different soci
er exist [26]. O
ding meta-cont
hese different ro

, such as vi
are two version
3). In contras
enerally not tra
alized after the
omments in te
urce documen
out changes) is
tire set of chan

rs do not disti
authors revise
source code, th
tput of the pr

producers an
by drawing dir

Figure 4). Becau
ce, sketching ra
ression. Worki
proach, but ha

isting domain
ples. UI revisi

emental modi

underlying sou
odality for grap
e., the resultin
ce

REVISING INT
of current pra

we developed d
ototypes. d.note
vironment that

oth look and fe
olution for bo
ts from revisin
d games.

ment revision a
mmenting. Ea
ax and semantic
ntax to expre
t (see Figure 2

ext from the ne
ion be accepte
multaneously,
ermore, edits a

on. When editin
al roles of c

Offering ways
tent that sugges
oles well.

isual differen
ns of source fil
st to docume
acked increme
 fact. Commen
xt documents

nt itself. Met
s generally on
nges.

inguish betwe
a single, shar

here is no way
ogram, only th
nd video gam
rectly on outpu
use the revisio
ather than text
ing in the outp
as thus far be

ns leads us
ion tools shou

ification of t

urce language
phical content
ng user interfa

TERACTIONS
actice and too
d.note, a revisio
e extends d.too
t simultaneous

eel
oth
ng

are
ch
cs.
ess
2);
ext
ed.
to

are
ng

co-
to

sts

nce
les
ent
en-
nts
as
ta-
nly

en
ed
to
he

me
ut,

ons
is

put
en

to
uld

he

ace

ols
on
ols
sly

shows
interfa
langua
device
define
graphic
5c). Lo
ism [9
pressed

Figure
visualiz

Figure
version

Figure
directly

Figure
graphic

both appear
ces (Figure 5)

age for prototy
s with graphic
the hardware
cal output (Fig
ogic diagrams

9]: transitions
d, go to state Q

2. Interlinear
zation in word

3. Source co
ns of a file sid

4. Video gam
y on rendered

5. The d.tools
cs editor (B), a

rance and int
). d.tools offe

yping informat
cal user interfa
(what inputs/o
gure 5b), and
are inspired b

express contro
Q”). GUI outpu

r revision track
d processing.

ode compariso
de-by-side.

me designers d
d still images (

s environmen
and storyboar

teraction logic
rs a visual co
tion appliances
aces. In d.tools
outputs exist - F

interaction log
by the statecha
ol flow (“if bu
ut is defined un

king and com

on tools show

draw annotatio
(from [4], p. 17

t with device
rd editor (C).

c of user
ontrol flow
s, physical
, designers
Figure 5a),
gic (Figure
art formal-
utton X is
niquely for

ment

two

ons
79).

editor (A),

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

495

each state. Additional dynamic behavior (e.g., tying screen
position of a graphic to accelerometer input values) can be
expressed through a scripting language.

Scenario
The following scenario introduces the benefits d.note
provides to interaction design teams. Adam is designing a
user interface for a new digital camera with on-camera
image editing functions. To get feedback, he drops his latest
prototype off in Betty’s office. Betty picks up the camera
prototype, and tries to crop, pan and color-balance one of
the pictures that Adam pre-loaded on the prototype. She
opens up the d.tools diagram for the prototype. She notices
that the image delete functionality is lacking a confirmation
screen – images are deleted right away. To highlight this
omission, Betty creates a new state (Figure 6) and sketches
a rudimentary confirmation dialog, which she connects to
the rest of the diagram with new transitions so she can
immediately test the new control flow (Figure 7). She next
notices that exiting to the top level menu is handled
inconsistently in the three different edit modes. She deletes
some incorrect transitions to the menu state (Figure 8), as
well as a superfluous state (Figure 9). Betty is not con-
vinced that the mapping of available buttons to crop an
image region is optimal. She selects the crop state and
creates an alternative for it (Figure 10). In the alternative,
she redirects button input and adds a comment for Adam to
compare the two implementations.

Revision primitives & display principles
In text, the atomic unit of modification is a character.
Because interactive systems have a larger set of primitives,
the set of possible revision actions is more complex as well.
In d.tools, the primitives are states, transitions, the device
definition, and graphical screens. With each primitive,
d.note defines both syntax and semantics of modification.
This section will provide examples of each operation.

d.note uses color to distinguish base content from elements
added and removed during revision. States and transitions
rendered in black outline are elements existing in the base
version; added elements are shown in blue; deleted
elements in red. Currently, d.note focuses on supporting
actions of a single reviewer. However, collected meta-data
make distinguishing between multiple revision authors
straightforward. Revised document elements could show
author identity through icons, tooltips, or unique colors.

Revising Behavior
Users can add states and transitions in revision mode as
they normally would; these states and transitions are
rendered in blue to indicate their addition (Figure 6). These
states and transitions behave like their regular counterparts.

When users remove states from the base version, the state is
rendered as inactive in red. To visually communicate that
this state can no longer be entered or exited, all incoming
and outgoing transitions are rendered as inactive with
dashed lines (Figure 9). At runtime, incoming transitions to
such states are not taken, making the states unreachable.

Figure 6. States added during
revision are rendered in blue.

Figure 7. New screen graphics can
be sketched in states.

Figure 8. Transition deletions are
marked with a red cross and
dashed red lines.

Figure 9. State deletions are
rendered in red. Connections are
marked as inactive.

Figure 10. Alternative containers
express different options for a state.

Figure 11. Comments can also be
attached to any state.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

496

Individual transitions can also be directly selected and
deleted. Deleted transitions are shown with a dashed red
line as well as a red cross, to distinguish them from
transitions that are inactive as a result of a state deletion
(Figure 8). When users remove states or transitions that
were added in revision mode, they are completely removed
from the diagram.

Revising appearance
Designers can modify graphics by sketching directly on top
of them with a pen tool within the graphics editor. Sketched
changes are then rendered on top of the existing graphics in
a state at runtime (Figure 12).

In addition to sketching changes to appearance, users may
also rearrange or otherwise modify the different graphical
components that make up the screen output of a state.
d.note indicates the presence of such changes by rendering
the screen outline in the state editor in a different color, as
keeping the original graphics present would interfere with
the intended design. The changes are thus not visualized on
the level of an individual graphical widget.

Revising device definition
Thus far, we have described changes to the information
architecture and graphic output of prototypes. When
prototyping products with custom form factors such as
medical devices, the set of I/O components used on the
device may also be subject to change and discussion. When
revising designs in d.note, users can introduce new physical
hardware elements by sketching them in the device editor
(Figure 5a, Figure 13). Prior to binding the new software
component to an actual piece of hardware, designers can
simulate its input during testing. A simulation tool in the
device editor injects events for the new component into the

logic model. This simulation tool is inspired by DART’s
Wizard of Oz prototyping support [23]. Currently, the
d.note implementation does not support adding output
devices; we believe adding output within this paradigm
would be fairly straightforward.

Commenting
In addition to functional revision commands, users can
sketch comments on the canvas of device, graphics, and
state editors (Figure 11). Any stroke that is not recognized
as a revision command is rendered as ink. This allows
tentative or ambiguous change proposals to coexist with
concrete changes. Inked comments are bound to the closest
state so they automatically move with that state when the
user rearranges the state diagram.

Proposing Alternatives
With d.note, users can introduce alternatives for appearance
and application logic. d.note represents the alternative by
duplicating the original state and visually encapsulating
both original and alternative (Figure 14). Incoming
transitions are re-routed to point to the encapsulating
container. Each state maintains its own set of outgoing
transitions. To define which of the alternative states should
become active when control transfers to an alternative set,
the container shows radio buttons, one above each con-
tained state. To reduce visual clutter, only outgoing
transitions of the active alternative are shown; other
transitions are hidden until their alternative is activated.

THE D.NOTE JAVA IMPLEMENTATION
d.note was implemented as an extension to d.tools. As such,
it was written in Java 5 and makes use of the Eclipse
platform, specifically the Graphical Editing Framework [1].
d.note runs on both Windows and Mac OS X.

Specifying actions through stylus input
Because much of early design relies on sketches as a visual
communication medium [3], d.note’s revision interface can
be either operated through mouse and keyboard commands,
or it can be entirely stylus-driven. Stylus input allows for
free mixing of commands and non-command sketches.
When using the stylus, strokes are sent through a recognizer

Figure 12. Sketched updates to screen content are
immediately visible on attached hardware.

Figure 13. Changes to the device configuration are
propagated to all states. Here, one button was deleted
while two others were sketched in.

Figure 14. Schematic of state alternatives: alternatives
are encapsulated in a common container. One alterna-
tive is active at a time. Alternatives have different output
and different outgoing transitions.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

497

(
a
c
ti
m
r
e
g
e
tr
a

F
A
a

I
d
h
ig

C
T
r
s
w
r
d
r
o
a

S
F
n
n
in
w

M
W
c
w
p
f
p
p
th
c
e
c

P
ti
(
w

the Paper Too
al.’s $1 recog
command. Com
ives use a p

misinterpretatio
recognition tak
element (if an
gesture set co
element undern
ransitions and

as comments (F

Figure 15. The
Any stroke not
actions is trea

n addition to
d.note extends
handle the inte
gnore states m

COMPARING I
To understand
revision techni
studies: the firs
without d.note
revisions with
design and HC
required expert
opted for a wit
and randomizat

Study 1: Autho
For word proc
nality provide
number and ty
nteraction desi

with freeform,

Method
We recruited
completed two
with. The non-d
prevent the ex
freeform anno
participants to
prototypes, one
he navigation

camera (Figure
exercises in Sh
counterbalance

Participants we
ion with an int
see Figure 16)

with stylus as

olkit [35] imp
gnizer [33]) to
mmand gesture
pigtail delimite
on of other
kes into acc
y) a gesture w

ontains comma
neath the gestu
alternatives. A

Figure 15).

e d.note gestu
t interpreted a
ted as a comm

providing draw
s the d.tools
eraction logic s

marked for delet

INTERACTIVE
d the user e
iques manifest
st compared au
e; the second

and without
CI students at
tise in creating
thin-subjects d
tion where app

oring Revision
essing, Wojah
d by a revis

ype of problem
igns differently
static annotatio

twelve par
 revision tasks
d.note conditio

xposure to d.n
otation pattern

critique one
e for a keycha
and managem
e 17). The ta
harp’s interact
ed task assignm

ere seated in f
teractive 21", 1
). Participants
s well as key

plementation o
o check if th
es to create sta
er, to reduce
rectangular s
ount what ex
was executed
ands to delet
ure, and to cr

All other stroke

ure set for styl
as one of the f
ment.

wing and gest
runtime syste

semantics of i
tion.

E AND STATIC
xperience of

t in d.note, we
uthoring of rev

d compared in
d.note. We re

t our universi
g UIs limited
design, with co
propriate.

ns
hn [34] found t
sion interface
ms discussed.
y with an inter
ons on a diagra

rticipants. Pa
s: one without
on was always
ote notation f

ns. Each revis
of two inform

ain photo view
ment of images

sks were insp
tion design tex

ment to the cond

front of a Mac
1600×1200 pix
could control

yboard and m

of Wobbrock
hey represent
ates and altern

the chance
strokes. Gestu
xisting diagra
on top of. Th

te the graphic
reate new state
es are interpret

lus operation.
first four

ture recognitio
em to correct
ts notation, e.g

C REVISIONS
the interactiv

e conducted tw
visions with an
nterpretation
ecruited produ
ty. Because th
recruitment, w

ounter-balancin

that the functi
influenced th

Do users revi
ractive tool th
am?

articipants ea
t d.note and on
assigned first

from influencin
sion task ask
mation applian
wer, and one f

on a digital st
pired by stude
xtbook [29]. W
ditions.

c OS X workst
xel tablet displ
this workstatio

mouse. We fir

Figure
design

Figure
with a
to rev
camer

et
a

na-
of

ure
am
he
cal
es,
ed

.

on,
tly
g.,

ve
wo
nd
of

uct
he
we
ng

io-
he
ise
an

ch
ne
to
ng
ed

nce
for
till
ent
We

ta-
ay
on
rst

demon
a warm
becom

In the
tion of
familia
comple
prototy
minute
using d

In the
workin
state d
Autode
and pa
tions a
today
digital
stronge
differ a
conclu

The ca
have a
becom
conditi
the pot

e 16. Participa
ns on a large

e 17. Participa
a color display
vise designs fo
ra, both runni

nstrated d.tools
m-up menu na

me familiar with

d.note conditi
f its revision
ar with the com
eted earlier. P
ype, run by d.t
es to revise th
d.note’s comm

e non-d.note c
ng prototype a
diagram for the
esk Sketchboo
articipants wer
and comments
often use pape

d.note interf
er minimal pa
among the con

usions from the

aveat of our de
affected usage

me more comfor
ion. However,
tential learning

ants in study
tablet display

ants were give
y and button in
or a keychain
ng on the prov

 to participants
avigation desig
h the visual aut

ion, students w
features, and

mmands using t
articipants wer
tools and d.no
e prototype di

menting and rev

condition, par
long with a st
e prototype. T
k Pro, a tablet

re given 15 mi
on top of that

er for static an
face to anothe
airs design. B
nditions, one c
e results.

esign is that ord
. For example
rtable, or more
 we judged th
g effect of bec

1 revised d.to
y.

en a prototype
nput. They we
display and a
vided device.

s and had them
gn (taken from
thoring languag

were given a d
five minutes
the warm-up p
re then given

ote, and asked
irectly in the a

vision features.

rticipants were
atic image of

The image was
PC drawing a

inutes to draw
t image. While
nnotation, com
er digital inte
Because fewer
can draw more

dering of cond
e, participants
e fatigued, for
his risk to be l
coming familia

ools

e device
ere asked
a digital

m complete
m [11]) to
ge.

demonstra-
to become

project they
a working
to take 15

application

e given a
the d.tools

s loaded in
application,

w modifica-
e designers

mparing the
erface is a
r variables
e confident

ditions may
may have
the second
lower than
ar with the

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

498

d.note annotation language and then applying it in the non-
d.note condition. After the design reviews, participants
completed a survey that elicited high-level summative
feedback in free response format.

Results
Figure 18 shows two examples of diagrams produced by
participants. We categorized all marks participants made;
Table 1 summarizes the results. Most notably, participants

wrote significantly more text comments without d.note than
with it (mean: 9.8 without, 2.3 with; two-tailed t(22)=6.20,
p<0.0001). In contrast, deletions were rare without d.note (4
occurrences); but common with d.note (34 occurrences; 8
out of 12 participants). Finally, revisions with d.note
focused on changes to the information architecture, while
freeform revisions often critiqued the prototype on a more
abstract level. Our results thus corroborate Wojahn’s
finding that the choice of revision tool affects the number
and type of revision actions [34].

The post-test survey asked participants to compare the
relative merits of Sketchbook and d.note. We categorized
their freeform written answers (Table 2). The two most
frequently cited advantages of d.note were the ability to
make functional changes (6 of 12 participants), and to then
test proposed changes right away (7 of 12 participants).

Three participants suggested that commenting was more
difficult with d.note; two wrote that the tool had a steeper
learning curve. Two participants with a product design
background wrote that using d.note led them to focus too
much on the details of the design. In their view, the lack of
functionality in the Sketchbook condition encouraged more
holistic thinking.

Discussion
Why did participants write less with d.note? One possibility
is that that users wrote more with Sketchbook because it
was easier to do so (Sketchbook is a polished product,
d.note a research prototype). To the extent this is true, it
provides impetus to refine the d.note implementation, but
tells us little about the relative efficacy of static and
dynamic approaches to design revision.

More fundamentally, d.note may enable users to capture
intended changes in a more succinct form than text
comments. Four participants explicitly wrote that d.note
reduced the need for long, explanatory text comments in
their survey responses: “[with d.note] making a new state is
a lot shorter than writing a comment explaining a new
state”; “[without d.note] I felt I had to explain my
sketches.” d.note’s rich semantics enable a user’s input to
be more economical: an added or deleted transition is

Table 1. Content analysis of d.tools diagrams reveals
revision patterns: with d.note, participants wrote less
and deleted more (Task K = keychain, C = camera).

Table 2. Most frequently mentioned advantages and
disadvantages of using d.note to express revisions.

Figure 18. Two revision diagrams produced by our study participants for the keychain photo viewer task.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

499

unambiguously visualized as such. In d.note, users can
implement concrete changes interactively; only abstract or
complex changes require comments. Without d.note, both
these functions have to be performed through the same
notation (drawing), and participants explained their graphic
marks with additional text because of this ambiguity. In our
data, inked transition arrows drawn without d.note (44
drawn transitions) were replaced with functional transitions
with d.note (78 functional transitions added; only 3 drawn
as comments).

Though participants could have disregarded the revision
tools and only commented with ink, the mere option of
having functional revision tools available had an effect on
their activity. This tendency has been noted in other work
[3,20]; understanding the tradeoff deserves future research.

Why did participants delete more with d.note? While
participants created new states and transitions in both
conditions, deletions were rare without d.note. Deletions
may have been implied, e.g., drawing a new transition to
replace a previously existing one, but these substitutions
were rarely noted explicitly. We suggest that deletions with
d.note were encouraged by the ability to immediately test
concrete changes. Quick revise-test cycles exposed areas in
which diagrams had ambiguous control structure (more
than one transition exiting a state on the same event).

Why were more changes to information architecture made
with d.note? The majority of revision actions with d.note
concerned the flow of control: adding and deleting transi-
tions and states. In the Sketchbook condition, participants
also revised the information architecture, but frequently
focused on more abstract changes (Example comment:
“Make [feedback] messages more apparent”). The scarcity
of such comments with d.note is somewhat surprising, as
freeform commenting was equally available. One possible
explanation is that participants focused on revising
information architecture because more powerful techniques
were at hand to do so. Each tool embodies a preferred
method of use; even if other styles of work remain possible,
users are driven to favor the style for which the tool offers
the most leverage.

Study 2: Interpreting Revisions
The first study uncovered differences in expressing
revisions. Are there similar characteristic differences in
interpreting revisions created with the two tools?

Method
Eight (different) participants interpreted the revisions
created by participants of the first study. After a demonstra-
tion and warm-up task (as in study 1), participants were
shown the two working prototypes and given time to
explore them. Next, participants were shown screenshots of
annotated diagrams (see Figure 18) on a second display.
Participants were asked to prepare two lists in a word
processor: one that enumerated all revision suggestions that
were clear and understandable to them; and a second list
with questions for clarification about suggestions they did
not understand. Participants completed this task four times:

one d.note and one freeform diagram were chosen at
random for each of the two prototypes.

Results
The cumulative counts of clear and unclear revision
suggestions for all participants are shown in Table 3.
Participants, on average, requested 1.3 fewer clarifications
on revisions when using d.note than when sketching on
static images (two-sample t(29)=1.90, p=0.03).

The post-test survey asked participants to compare the
relative merits of interpreting diagrams revised with d.note
and Sketchbook. The most frequently mentioned benefits
arose from having a notation with specified semantics
(Table 4): revisions were more concrete, specific, and
actionable. Frequently mentioned drawbacks were visual
complexity and problems discerning high-level motivation
in d.note diagrams.

Discussion
Why did participants ask for fewer clarifications with
d.note? When interpreting revised diagrams, participants
are faced with three questions: First, what is the proposed
change? Second, why was this change proposed? Third,
how would I realize that change? The structure of this study
asked participants to explicitly answer the first question by
transcribing all proposed changes. We suggest that the
formal notation in d.note decreased the need for clarifica-
tion for two reasons. First, the presence of a formal notation
resulted in a smaller number of handwritten comments, and
hence less problems with legibility (Example without
d.note: “Change 6 - unreadable”). Second, because of the

Table 3. How well could study 2 participants interpret
the revisions created by others? Each vertical bar is
one instance.

Table 4. Perceived advantages and disadvantages of
using d.note to interpret revisions as reported by study
participants.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

500

ad-hoc nature of handwritten annotation schemes in
absence of a formal system, even if comments were legible,
participants frequently had trouble tying the comments to
concrete items in the interface (Example: “I have no idea
what it means to ‘make it clear that there is a manual mode
from the hierarchy’. What particular hierarchy are we
talking about?”).

How might we improve capturing the motivation for
changes? In the survey, participants commented that it was
harder to understand why certain changes were proposed in
d.note. While handwritten comments focused on high-level
goals without specifying implementations, tracked changes
make the opposite tradeoff: the implementation is obvious
since it is already specified, but the motivation behind the
change can remain opaque. We see two possible avenues to
address this challenge. First, when using change tracking,
multiple individual changes may be semantically related.
For example, deleting one state and adding a new state in its
stead are two actions that express a desired single intent of
replacement. The authoring tool should detect such related
actions automatically or enable users to specify groups of
related changes manually. Second, even though freeform
commenting was available in d.note, it was not used
frequently. Techniques that proactively encourage users to
capture the rationale for changes may be useful.

How might we reduce the visual complexity of annotated
diagrams? Visual programs become harder to read as node
and link density increases. Showing added and deleted
elements simultaneously in the diagram sometimes yielded
“visual spaghetti”: a high density of transition lines that
made it hard to distinguish one line from another. The
connection density problem becomes worse when state
alternatives are introduced because each alternative for a
state has an independent set of outbound transitions.

In response, we already modified the drawing algorithm for
state alternatives to only show outgoing connections for the
currently active alternative within an alternative container.
Additional simplification techniques are needed though.
The Topiary system [21] highlights incoming and outgoing

transitions to make them visually prominent. A further step
in this direction would be to only render incoming and
outgoing transitions for a highlighted state and hide all
other transitions on demand.

THE DESIGN SPACE OF REVISION TOOLS
The particular implementation of revision techniques in
d.note represents only one point solution in a larger design
space of possible user interface revision tools. The main
salient dimensions we considered during our work are
summarized in Table 5. d.note focuses on revision of
information architecture and screen content of user
interfaces through sketching of comments and modifica-
tions on top of UI state diagrams and screen images. In our
study, these functions were used to point out problems and
to suggest as well as implement changes. The design space
reveals additional areas of exploration we have not touched
upon so far. For example, it is not yet possible to directly
modify dynamic behaviors such as animations, as those are
defined in source code. In fact, it is not even feasible to
efficiently comment on dynamic behaviors either, as there is
no visual record of them in the interaction diagram.
Recording and annotating video of runtime behavior is one
promising avenue to enable commenting on dynamic
aspects. Many usability testing tools already support video
annotation. How to tie comments and annotations back to
the source representation of the UI is an open question.

The particular revision actions of d.note are based on a
visual language that shows both user interface content and
information architecture in the same environment. d.note
techniques directly transfer to other authoring environments
that use UI states as their primary abstraction. Such tools
exist both in research (e.g., DENIM [22], SUEDE [17]) and
industry (e.g., Adobe Flash Catalyst, which is based on
states and transitions, though with different visual layout).
In addition, change visualization for node-link diagrams of
interactive systems can also apply to popular commercial
data flow authoring environments such as MaX/MSP and
Apple Quartz Composer. But how might we express
revisions for user interfaces specified entirely in source
code? Existing source revision techniques do not permit
designers to comment or revise the output of their applica-
tion. Future research should investigate if sketch-based
input and annotation in the output domain of a program can
be applied to UIs expressed in textual source code.

CONCLUSION
This paper introduced the d.note revision notation for
interaction design. It contributed an analysis of how to
transfer principles of document revision to the domain of
interaction design and introduced concerns unique to the
revision of interaction designs: design alternatives as a
revision operation; and immediate testing of proposed
functional revisions.

The paper also evaluated d.note against freeform sketched
comments in two studies. The first study on revision
production found that the type of revision tool used had an
impact on the type and number of revisions: participants
wrote less, deleted more, and focused their changes on

Table 5. A design space of user interface revision tools.
The sub-space d.note explored is outlined in green.

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

501

information architecture when using d.note. The second
study on revision interpretation found that participants
asked for fewer clarifications about revisions, but had less
insight into the motivations behind revisions when using
d.note. Our study pointed out that optimally balancing both
structured and informal feedback may not be straightfor-
ward. Fundamentally, the presence of functional revision
tools appeared to discourage participants from freeform
commenting. Future work should address how to structure a
revision tool so that it leads to more balanced suggestions.

REFERENCES
1. Eclipse Graphical Editing Framework (GEF).

http://www.eclipse.org/gef/.

2. Bailey, B.P., Konstan, J.A., and Carlis, J.V. DEMAIS:
designing multimedia applications with interactive story-
boards. Proceedings of the ACM international conference on
Multimedia, ACM (2001), 241-250.

3. Buxton, B. Sketching User Experiences: Getting the Design
Right and the Right Design, Chapter on Visual Story Telling.
Morgan Kaufmann, 2007.

4. Cross, N. Designerly Ways of Knowing. Springer, 2006.

5. Drucker, S.M., Petschnigg, G., and Agrawala, M. Comparing
and managing multiple versions of slide presentations. Pro-
ceedings of UIST 2006, ACM (2006), 47-56.

6. Girschick, M. Difference detection and visualization in UML
class diagrams. Report TUD-2006-05, TU Darmstadt, 2006.

7. Guimbretière, F. Paper augmented digital documents.
Proceedings of UIST 2003, ACM (2003), 51-60.

8. Hailpern, J., Hinterbichler, E., Leppert, C., Cook, D., and
Bailey, B.P. TEAM STORM: demonstrating an interaction
model for working with multiple ideas during creative group
work. Proceedings of Creativity and Cognition 2007, ACM
(2007), 193-202.

9. Harel, D. Statecharts: A Visual Formalism For Complex
Systems. Sci. of Computer Programming 8, (1987), 231-274.

10. Hartmann, B., Yu, L., Allison, A., Yang, Y., and Klemmer,
S.R. Design As Exploration: Creating Interface Alternatives
through Parallel Authoring and Runtime Tuning. Proceed-
ings of UIST 2008, ACM (2008).

11. Hartmann, B., Klemmer, S.R., Bernstein, M., et al. Reflec-
tive physical prototyping through integrated design, test, and
analysis. Proceedings of UIST 2006, ACM (2006), 299-308.

12. Heckel, P. A technique for isolating differences between
files. Communications of the ACM 21, 4 (1978), 264-268.

13. Heer, J., Mackinlay, J.D., Stolte, C., and Agrawala, M.
Graphical Histories for Visualization: Supporting Analysis,
Communication, and Evaluation. Proceedings of IEEE In-
formation Visualization 2008, IEEE (2008).

14. Hunt, J.W. and McIlroy, M.D. An Algorithm for Differential
File Comparison. Computing Science Technichal Report #41,
Bell Laboratories, (1976).

15. Jones, J.C. Design Methods. Wiley, 1992.

16. Klemmer, S. Integrating physical and digital interactions.
Computer 38, 10 (2005), 111-113.

17. Klemmer, S.R., Sinha, A.K., Chen, J., Landay, J.A.,
Aboobaker, N., and Wang, A. Suede: a Wizard of Oz proto-

typing tool for speech user interfaces. Proceedings of UIST
2000, ACM (2000), 1-10.

18. Klemmer, S.R., Thomsen, M., Phelps-Goodman, E., Lee, R.,
and Landay, J.A. Where do web sites come from?: capturing
and interacting with design history. Proceedings of CHI
2002, ACM (2002), 1-8.

19. Kurlander, D. and Feiner, S. Editable Graphical Histories.
Workshop on Visual Languages, IEEE (1988), 127-134.

20. Landay, J. and Myers, B. Sketching Interfaces: Toward More
Human Interface Design. Computer 34, 3 (2001), 56-64.

21. Li, Y., Hong, J.I., and Landay, J.A. Topiary: a tool for
prototyping location-enhanced applications. Proceedings of
UIST 2004, ACM (2004), 217-226.

22. Lin, J., Newman, M., Hong, J., and Landay, J. DENIM:
finding a tighter fit between tools and practice for Web site
design. Proceedings of CHI 2000, ACM (2000), 510-517.

23. MacIntyre, B., Gandy, M., Dow, S., and Bolter, J. DART: a
toolkit for rapid design exploration of augmented reality ex-
periences. Proceedings of CHI 2004, ACM (2004), 197-206.

24. Mehra, A., Grundy, J., and Hosking, J. A generic approach to
supporting diagram differencing and merging for collabora-
tive design. Proceedings of the International Conference on
Automated software engineering, ACM (2005), 204-213.

25. Moggridge, B. Designing Interactions. The MIT Press, 2007.

26. Neuwirth, C.M., Kaufer, D.S., Chandhok, R., and Morris,
J.H. Issues in the design of computer support for co-
authoring and commenting. Proceedings of CSCW 1990,
ACM (1990), 183-195.

27. Perry, M. and Sanderson, D. Coordinating joint design work:
the role of communication and artefacts. Design Studies 19, 3
(1998), 273-288.

28. Schipper, A., Fuhrmann, H., and Hanxleden, R.V. Visual
Comparison of Graphical Models. Proceedings of the IEEE
Int'l Conference on Engineering of Complex Computer Sys-
tems, IEEE Computer Society (2009), 335-340.

29. Sharp, H., Rogers, Y., and Preece, J. Interaction Design:
Beyond Human-Computer Interaction. Wiley, 2007.

30. Song, H., Guimbretière, F., Hu, C., and Lipson, H. Model-
Craft: capturing freehand annotations and edits on physical
3D models. Proceedings of UIST 2006, ACM (2006), 13-22.

31. Su, S. Visualizing, Editing, and Inferring Structure in 2D
Graphics. Adjunct Proceedings of UIST 2007, ACM (2007).

32. Terry, M., Mynatt, E.D., Nakakoji, K., and Yamamoto, Y.
Variation in element and action: supporting simultaneous
development of alternative solutions. Proceedings of CHI
2004, ACM (2004), 711-718.

33. Wobbrock, J.O., Wilson, A.D., and Li, Y. Gestures without
libraries, toolkits or training: a $1 recognizer for user inter-
face prototypes. Proceedings of UIST 2007, ACM (2007),
159-168.

34. Wojahn, P.G., Neuwirth, C.M., and Bullock, B. Effects of
interfaces for annotation on communication in a collabora-
tive task. Proceedings of CHI 1998, ACM (1998), 456-463.

35. Yeh, R., Paepcke, A., and Klemmer, S.R. Iterative Design
and Evaluation of an Event Architecture for Pen-and-Paper
Interfaces. Proceedings of UIST 2008, ACM (2008).

CHI 2010: End-User Programming I April 10–15, 2010, Atlanta, GA, USA

502

