

Predicting the Cost of Error Correction in Character-Based
Text Entry Technologies

Ahmed Sabbir Arif, Wolfgang Stuerzlinger
York University

Toronto, Ontario, Canada
{asarif, wolfgang}@cse.yorku.ca

ABSTRACT
Researchers have developed many models to predict and
understand human performance in text entry. Most of the
models are specific to a technology or fail to account for
human factors and variations in system parameters, and the
relationship between them. Moreover, the process of fixing
errors and its effects on text entry performance has not been
studied. Here, we first analyze real-life text entry error
correction behaviors. We then use our findings to develop a
new model to predict the cost of error correction for
character-based text entry technologies. We validate our
model against quantities derived from the literature, as well
as with a user study. Our study shows that the predicted and
observed costs of error correction correspond well. At the
end, we discuss potential applications of our new model.

Author Keywords
User and cognitive model, performance metric, text entry,
mobile phone, error correction.

ACM Classification Keywords
H.1.2 User/Machine Systems: Human factors.

General Terms
Human factors, measurement, performance.

INTRODUCTION
Text entry has become ubiquitous. The most popular text
entry technologies are physical keyboards or on-screen
keyboards operated by tapping with a finger or stylus [22].
There are also gesture- and speech-based technologies, and
technologies that utilize handwriting. The later differ in
nature as they are designed to process the input one word at
a time, while most keyboards work at the level of one
character at a time. The work reported here focuses on input
technologies that are based on inputting a single character
at a time, such as physical keyboards, on-screen keyboards,
and gesture-based input technologies.

Error behavior in character-based text entry is not well
understood. All existing models for the cost of error

correction account, at best, for errors in an indirect way.
They either fail to account for both human- and system-
specific parameters or are not general enough to be used
with different text input technologies.

We start this paper by analyzing human and system error
correction behaviors in existing text entry experiments.
Based on that, we present a model that accounts for both
human- and system-specific parameters to measure and
predict the cost of error correction. We then verify our
model in several ways. First, we measure the cost of error
correction for three popular text entry technologies,
Qwerty, virtual keyboard, and 12-key mobile keypad, via
data collected from previous work. Then, we present a user
study that verifies if the predicted impact of system errors
on Qwerty keyboard text entry matches real results. Finally,
we generate some predictions and speculate on future
extensions.

RELATED WORK
In the 1980’s, Card et al. [5] presented the GOMS technique
to predict user skilled performance time. They separated the
human’s cognitive architecture into four basic components:
goals, operators, methods for achieving the goals, and
selection rules for choosing among competing methods for
goals. Despite the technique’s power, it was never used on a
large scale in the HCI community. The most likely reason is
that the cost of first learning the technique and then
constructing a correct model for a technology is too high to
justify the benefits. Researchers have proposed different
variations of GOMS to make modeling easier. For example,
the Keystroke-Level Model (KLM) [4] eliminates all
elements but the primitive operators. This makes KLM
comparatively easier to learn and to construct models, but
also makes it inadequate for multi-modal technologies. The
Natural GOMS Language (NGOMSL) [13] is a high-level
syntax for GOMS and based on cognitive complexity
theory. Constructing NGOMSL models require performing
a top-down, breadth-first expansion of the user’s top-level
goals into methods and further into primitive operators.
Mastering the NGOMSL technique requires significant
effort, as does the construction of a correct model. The
Cognitive-Perceptual-Motor GOMS (CPM-GOMS) is based
on a model human processor [7]. Unlike other variations of
GOMS, CPM-GOMS is capable of modeling multitasking
behaviors, because it does not enforce user interaction as a
serial process. But CPM-GOMS also requires a thorough

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

5

understanding of GOMS and the human cognitive
architecture.

ACT-R [1] is a cognitive architecture that aims to define
both the basic, irreducible cognitive as well as perceptual
operations that enable the human mind. As such, it looks
like a programming language at first glance. Constructing
an ACT-R model requires a detailed model of a cognitive
task, which means significant amount of expertise, time,
and effort. Moreover, the original form of ACT-R does not
handle motor and perceptual systems correctly, although
recent versions rectify some of the shortcomings.

To overcome the complexity of the model construction
process, rapid modeling tools, such as QGOMS [3] and
CAT-HCI [25], have been developed. The problem with
these tools is that, once a model has been created, it is hard
to change the model. Then, in case of upgrades or design
changes, the developers have to either construct a new
model or have to calculate the effect of that change by
hand. Other tools, such as CRITIQUE [11], depend on
research tools that are not commonly available. John et al.
proposed a new system to overcome these problems by
integrating HTML mock-ups with ACT-R [12]. This,
however, limits the scope to web browsers.

There are several models that predict text entry speed or
performance. But none of them account for the cost of error
correction. The KLM model mentioned above can predict
text entry performance, by counting keystrokes and other
low-level operations, such as the mental preparation and the
system’s response time. A similar model was presented by
Dunlop et al. [6] to forecast the performance of predictive
text entry technologies, using three timing elements from
KLM, though their timing elements were measured for full
size keyboards. How et al. [10] improved that model by
defining thirteen operators that map directly to operations
on a mobile keypad for different text entry technologies.
Later, Hollies et al. [9] presented another keystroke-level
model to measure and predict mobile phone interactions.
Their model considers even advanced interactions, such as
using the embedded camera. Soukoreff et al. presented a
theoretical model to predict upper and lower-bound entry
speeds for using a stylus to tap on soft keyboards [23]. The
model is based on the Hick-Hyman law for choice reaction
time [21], Fitts’ law for rapid aimed movements [21], and
English linguistic tables for the relative frequencies of
digrams. All of these models predict the performance of
particular text entry technologies, without accounting for
error correction methods and behavior. Several other
metrics to characterize a techniques’ performance exist.
However, we do not discuss this here, as reviews of these
metrics are available elsewhere [2, 26].

In 1997, Suhm developed an interactive multimodal error
correction method for speech recognition [24]. His method
can account for switches between different input modalities,
such as continuous speech, oral spelling, hand-drawn
gestures, choosing from a list of alternatives, cursive

handwriting, or typing. To predict the performance of his
technique he introduced a high-level model for the cost of
error correction, as existing models cannot predict the
performance of a multimodal technique. The model
expresses the users’ effort on error correction as a
compound measure of the time required by the user to
correct errors, the response time of the system, the accuracy
of the automatic interpretation of corrected input, and the
naturalness of the interaction. To overcome the model’s
technology dependency to some degree, Suhm separates
human-specific parameters from system-specific ones. The
model, however, does not contain important human-specific
parameters, such as the visual verification time, human
movement time, and the probability of committing an error.
Moreover, the relationships between various parameters
were not clearly explained.
Contributions
First, we present an analysis of real-life error correction
behaviors and strategies. We used data from a previously
reported experiment to analyze how error correction is
carried out in text entry. We identified the most frequently
used correction operation, the probability of making errors
during the correction process, the effect of system-specific
delays and errors, and so forth. We believe this analysis will
help researchers and practitioners to understand the error
correction process better.

We then use our findings to model error correction
behavior. The initial purpose was to observe how different
levels of accuracy, both human- and system-specific error
levels, affect the error correction process and text entry
itself. We verify our model through cross-comparisons with
data from the literature. In addition, we describe different
ways of calculating or deriving the parameter values for the
model. Moreover, we performed an experiment to confirm
the predictions. Some text entry technologies are not
accurate, i.e. have significant system-specific error levels.
We use our model to predict the effect of different level of
system-specific errors and show that the experimental
results correspond well to the predictions.

ERROR CORRECTION STRATEGIES
In text entry technologies, errors can be corrected with two
different strategies: character-level or word-level. In
character-level correction any erroneous character is
corrected right away. In word-level correction, erroneous
key presses are corrected after several other keystrokes
have happened following the incorrect one. This kind of
strategy is used when experienced users chunk their input,
or when they do not verify their input right away. Almost
all popular text entry technologies provide methods to
correct errors that are committed with both strategies [8].
However, there is no data how frequent these two strategies
occur in practice.

Data Collection
We obtained raw input logs from a recent text entry
experiment [2]. There, the main purpose was to observe the
effect of different error correction conditions on various

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

6

text entry performance metrics, such as Words per Minute
(WPM) and Keystroke per Character (KSPC), and to
investigate the relationship between them.

In that experiment, 12 participants, aged from 22 to 45,
average 27 years, participated. There were 3 sessions, 9
blocks in each session, with 20 phrases per block. The
experiment used a Qwerty keyboard and the set of English
phrases from MacKenzie et al. [17]. The participants were
fluent English speakers and reasonably experienced touch
typists (50 WPM or above).

That experiment analyzed three different error correction
conditions: none, recommended, and forced. The none
condition actively prevented participants from correcting
errors, while the forced condition required uses to correct
all errors. The recommended condition encouraged normal
user behavior. That is, participants typed the presented
phrase as fast and accurate as possible. Errors were
corrected as users noticed them. Participants were informed
that they could correct errors with their preferred method,
including keyboard shortcuts, navigation keys, backspace,
delete, or the mouse.

From the detailed event logs of the experiment, we
extracted the data for the recommended condition. As the
experiment used a counterbalanced design, we did not
worry about asymmetric skill transfers. We then used the
number of backspace characters in correction episodes to
detect how quickly participants noticed and fixed errors.
This was motivated by the fact that an analysis showed that
99% of the time participants corrected their errors with the
backspace key. The remaining 1% was keyboard shortcuts,
navigation and delete keys, or the mouse. We acknowledge
that this high percentage of backspace usage may hold only
for short English phrases and not for longer texts. However,
other work shows that text editing is fundamentally
different from text entry [20] and involves repeated
problems solving and versatile planning. This makes editing
unpredictable and hard to model. Thus, text entry correction
in longer segments of text is virtually indistinguishable
from general text editing. To remove this confound, we
used data for short English phrases and all analysis was
limited to error correction episodes involving backspace.

Overall, our analysis indicates that the proportion of error
correction strategies is balanced. On average 50.29%
(SD = 7.2) of all error correction efforts were character-
level, and the remaining 49.71% (SD = 7.2) were word-
level corrections. Figure 1 illustrates the different strategies
of error correction by participant.

We further analyzed the word-level corrections to calculate
more precisely when errors got noticed and corrected. Our
results indicate that 96.10% of all times an erroneous
character got noticed and fixed between the second and
fifth character, counted from the erroneous one, and the rest
got noticed within twelve characters. We also noticed that
some errors were identified and corrected only when
participants visually scanned the entered text after they

were finished with the phrase. We did not consider these
correction operations in our analysis, as this behavior
occurred rarely, in 1.7% of all cases.

Figure 1. Character- and word-level error correction.

Sometimes errors happened during the error correction
process. An example of such an incident would be the user
first typing “b” instead of the desired “a”, and then
erroneously typing “c” while attempting to fix the previous
error. Our analysis shows that on average 6.68%
(SD = 3.97) of the total errors were committed during the
correction process. Of these, 86.11% were corrected in the
second try, and the rest on the third iteration. We were not
able to find an incident where more than three tries were
required to fix an error.

THE COST OF ERROR CORRECTION
Error correction involves both human-specific elements,
such as the time to verify a correction, as well as system-
specific elements, such as the key sequence required to
replace a wrong character.

Figure 2. A flowchart representation of text entry error

correction behavior.

Human Error Correction
It is necessary to have a better understanding of human
error correction behavior to create a meaningful model.
From our above analysis of error correction behaviors we
found that the correction process follows a specific pattern.

Users usually immediately verify what they have typed and
correct errors right away, i.e. character-level correction.
However, users also chunk their input and verify the result
only after typing a few characters or even the whole word.
In the later scenario, denoted word-level correction, users
navigate to the area where they have noticed an error,
correct it, and then resume their work. As determined by

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

7

our analysis of human error correction behavior, the
predominant strategy is to use the backspace key for both
character-level and word-level corrections! There seems to
be no fundamental difference between the two strategies,
except that rewriting multiple erased characters is an
integral part of word-level correction, which scales linearly
with the number of characters after which the error was
noticed. Consequently, we see no reason to distinguish
between character-level and word-level error correction
behaviors in our model.

Error correction requires additional cognitive (planning)
and motor (hand or finger movement) steps compared to
error-free text entry behavior. Figure 2 illustrates the
expected sequence of steps for normal text entry and error
corrections in a flowchart. As illustrated, there are the
following human-specific parameters for error correction:

• 𝑻𝑻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ , the preparation time, is the cognitive planning and
decision time to start or resume a task.

• 𝑻𝑻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝ℎ , the movement time, is the time required by the user
to move their finger(s) to the intended key(s).

• 𝑻𝑻𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖ℎ , the input time, is the time necessary for the user to
perform a single keystroke or similar operation, such as
stylus tap, mouse click, or a gesture.

• 𝑻𝑻𝑚𝑚𝑝𝑝𝑝𝑝𝑖𝑖𝑣𝑣𝑣𝑣ℎ , the verification time, is the cognitive time
required to verify that output matches input.

• 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝ℎ , the human-specific error probability, is the
probability of users making an error when performing a
keystroke or similar operation.

Figure 3. Input handling in text entry technologies.

System-Specific Parameters
Text entry technologies use both open loop and closed loop
systems. In closed or feedback loop systems, inputs trigger
the processes and the processes control the outputs. For
example, while entering a character, a keystroke triggers the
process that decides what character to display on the screen.
On the other hand, in open loop systems, user inputs only
trigger the processes that convert the input to the output,
while the user can continue working. In other words, an
open loop system does not directly monitor the output of
the process that it is controlling. In some text entry
technologies, such as handwriting or speech recognition, a
specific command or operation may be processed in the
background instead of immediately displaying the result.
One potential reason is that e.g. many handwriting

recognition methods cannot be performed fast enough.
Figure 3 illustrates the input handling of the text entry
technologies in a flowchart, where the shaded tasks are
performed only in closed loop scenarios.

Depending on the technology and system, some recognition
tasks may take significant time. That is why it is important
to identify system specific parameters that may play a role
in error correction procedures.

System-Specific Parameters
• s, the system, is a specific text entry technology, defined

by a combination of software and hardware. Examples
are Qwerty, MultiTap, T9, etc.

• 𝑻𝑻𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑠𝑠 , the system output time, is the time necessary for
the system s to process a keystroke or similar operations
and output the result.

• 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠 , the system-specific error probability, is the
probability of the system making an error when
processing an input action. Some technologies are
practically error-free or suffer only from very rare key
malfunction. Other technologies, especially recognition
technologies, have to distinguish between potentially
fairly similar forms of input and exhibit significant error
rates. For example, in handwriting recognition
technologies, it is a common system error to misidentify a
“u” as “v”, and vice versa.

Compound Parameters
We define the following compound parameter based on the
human and system-specific parameters defined above:

• Toutput, or output time, is the sum of the time to correct a
character entered by the user and the time to process and
display that input through the system.
𝑻𝑻𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑻𝑻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝ℎ + �𝑻𝑻𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖ℎ ∗ �𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑣𝑣 + 1�� + 𝑻𝑻𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑠𝑠 (1)

Here, KSPCf is the Keystrokes per Character (KSPC) metric
calculated using a corpus’s letter-frequencies. This metric is
commonly used in text entry studies to measure the average
number of keystrokes required to generate a character of
text for a given text entry technology.

We scale 𝑻𝑻𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖ℎ with KSPCf because there are technologies
where it takes more or less than one keystroke to enter a
character, e.g. MultiTap or T9. In unambiguous text entry
technologies, such as Qwerty or Dvorak, it takes exactly a
single keystroke to input a character. The “+ 1” term after
KSPCf accounts for the fact that character-based text entry
technologies have a dedicated delete or backspace key. This
is justified, as 99% of all error corrections episodes used
this backspace key to delete an erroneous character, see
above. KSPCf can be calculated using the following
equation [16]:

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑣𝑣 = ∑(𝑲𝑲𝑐𝑐ℎ𝑎𝑎𝑝𝑝 ∗𝑭𝑭𝑐𝑐ℎ𝑎𝑎𝑝𝑝)
∑(𝑪𝑪𝑐𝑐ℎ𝑎𝑎𝑝𝑝 ∗𝑭𝑭𝑐𝑐ℎ𝑎𝑎𝑝𝑝)

 (2)

Here, Kchar is the number of keystrokes required to enter a
character, Fchar is the frequency of the character in the

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

8

corpus, and Cchar is the length of the input, which is 1 for
characters. Cchar ensures that one can generalize this notion
to input of more than a single character, e.g. words [16].

• Tcorrect, the correction time, is the compound of the
human and system time necessary to correct a single
erroneous character in a single attempt. By adding the
effort for the mental preparation necessary to fix an error
to Toutput, we arrive at:

𝑻𝑻𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖 = 𝑻𝑻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ + 𝑻𝑻𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 (3)

We add the mental preparation time 𝑻𝑻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ as error
correction involves significant amount of cognitive
planning and decision making, including the time to
mentally “change tracks”.

The Probability of Errors
The whole probability for an error to happen can be
expressed as:

• ρerror, the compound of the probability of either the
system, or the user, or both making an error:

𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 = (𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝ℎ + 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠) − (𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝ℎ ∗ 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠) (4)

Here, 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝ℎ ∗ 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠 represents the probability of a
simultaneous error by both the system and the user. We
subtract this, as despite the fact that both parties have
committed mistakes, such as the user entering a wrong
character and the system misinterpreting that, everything
results in only a single erroneous character.

The Probability of Noticing an Error ρchar

We discussed in a previous section that errors are not
always noticed right after they were committed. In-depth
analysis of the experimental logs indicates that the
probability that an error will be identified after c characters
is subject to exponential decay. This is illustrated in Figure
4, where we can also see that the data can be fit quite well
with an exponential function (R2 = 0.97). We speculate the
out of line data point after the second character to be a
behavioral pattern that does not follow the general trend.
However, we do not have enough data to be able to make a
definite statement on this.

Figure 4. The probability of noticing an error after the c-th

character ρchar
c is exponentially distributed.

Hence, we propose that the probability of noticing an error
after c characters can be modeled accurately by an
exponential distribution. More precisely, c is a nonnegative

integer and c = 1 means that the error was noticed right
after committing it.

• ρchar
c, is the probability of noticing an error after c

characters:

𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝 𝑐𝑐 = 𝑎𝑎 ∗ 𝑝𝑝𝑏𝑏𝑐𝑐 (5)

Where, e is Euler’s number (e ≈ 2.718), and a and b are
constants that are determined by the curve fitting process.

A High-Level Model for the Cost of Error Correction
Based on the above analysis of error behavior logs, as well
as the analysis of human error correction strategies and the
relationship of human- and system-specific parameters we
can present a new model for the cost of error correction:

• 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 , the average time it takes to fix errors using a text
entry technology s.

𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 = ∑ �𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 𝑖𝑖 ∗ ∑ (𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝 𝑐𝑐 ∗ 𝒄𝒄 ∗ 𝑻𝑻𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖)∞
𝑐𝑐=1 �∞

𝑖𝑖=1 (6)

Here, i expresses the number of corrections. We multiply c
with Tcorrect as the number of necessary correction
operations increases with c, the number of characters after
an error was noticed. Notice that 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 itself as well as the
central term are both convergent series. Using the general
formula for geometric sums we get:

∑ (𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝 𝑐𝑐 ∗ 𝒄𝒄 ∗ 𝑻𝑻𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖)∞
𝑐𝑐=1 = 𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝

(1−𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝)2 ∗ 𝑻𝑻𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖 (7)

Using Equation (7) and solving for 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 we get:

𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 = 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 ∗𝑻𝑻𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖 ∗ 𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝
(1−𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝)(1−𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝)2 (8)

Equation (8) expresses the (extra) cost of error correction
per character, in seconds or milliseconds. As values for
𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 are likely smaller than 20% in any practically useful
system and using a first order approximation, we can state
that this means that that error correction effort is
approximately directly proportional to the reliability of the
user and the system, see also Figure 6.

The Cost of Error Correction vs. Error Correction Time
Note that 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 does not predict the time it takes to correct n
characters of errors, instead it predicts the extra time it will
require on average per character to fix errors with a given
text entry technology - regardless if a mistake was made on
that character or not. For example, if we have x characters
in a phrase then we can say on average it will take 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠
seconds more per character with text entry technology s.
Tcorrect, on the other hand, predicts the time necessary to
correct an erroneous character in a single attempt, see
Equation (3). Therefore, designers can use this term as a
measure for the error fixing time for a specific technology.

Limitations of the Model
Our model targets the cost of error correction in character-
based technologies where texts are inputted one character at
a time. As such, it cannot be applied directly to word-based
technologies, such as, speech, gesture, or handwriting
recognition, where texts are inputted word by word. This

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

9

model will also not work without changes for multi-modal
or predictive technologies and scanning keyboards. The
reason is that there the process of entering text and
correcting errors is different from character-based
technologies. This model also does not account for
environmental distractions, such as noise or motion. But we
point out that practically all models for input tasks in HCI
assume a distraction-free environment.

PARAMETER VALUES
Obtaining the necessary parameters for our new model
typically requires controlled experiments. Some of our
parameter values are largely independent of a specific
technology. This is especially true for the human-specific
ones. Other values can be collected from the existing
literature on popular text entry technologies. However,
some values need to be found experimentally, e.g. if new
technologies are tested, or for existing ones that have not
been well studied. To help in some of these situations, we
present several alternatives to derive various parameters
from commonly used text entry performance metrics.

Calculating Tcorrect
The Words per Minute (WPM) metric is the most frequently
used empirical measure of text entry performance. WPM
measures how many words can be entered per minute. It is
usually defined as:

𝑊𝑊𝐾𝐾𝑊𝑊 = |𝑇𝑇|−1
𝐾𝐾

∗ 60 ∗ 1
5
 (9)

Here, S is time in seconds measured from the first key press
to the last, including backspaces and other edit and modifier
keys. The constant 60 is the number of seconds per minute,
and the factor of 1/5 accounts for the length of a word [26],
as it is common practice to regard a word as five characters
including spaces, numbers, and other printable characters.
Note that S is measured from the entry of the very first
character to the last, which means that the entry of the first
character is never timed, which is the motivation for the
term “– 1” in the numerator of Equation (9).

We want to mention here again that a previous survey
showed that text entry experiments are conducted with one
of three error correction conditions [2]: none – where
participants are not allowed to correct errors, recommended
– where participants are asked to correct their errors as they
identify them, and finally forced – where participants are
forced to correct each error. But that study also showed that
these correction conditions do not have a significant effect
on WPM. Therefore, it is possible to approximate 𝑻𝑻𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖
from WPM using the following equation:

𝑻𝑻𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 ≈ 60
𝑊𝑊𝐾𝐾𝑊𝑊∗5

∗ �𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑣𝑣 + 1� (10)

Here, 60
𝑊𝑊𝐾𝐾𝑊𝑊∗5

 is the time it takes to enter a character, see the
derivation of Equation (9). We did not add the preparation
time 𝑻𝑻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ , because it has already been accounted for in the
WPM value. Moreover, WPM does not differentiate
between the number of keystrokes made, the cognitive, or

the motor time during text entry. Based on this
approximation, we can estimate Tcorrect using Equation (3).

Calculating ρerror
It is standard practice to present error rates along with WPM
when introducing or comparing text entry technologies.
Error rates are usually calculated with one of four error
metrics [2]: Error Rate (ER), Erroneous Keystrokes Error
Rate (EKS ER), Total Error Rate (Total ER), and Minimum
String Distance Error Rate (MSD ER). These metrics
represent the combined errors committed by the human and
the system. Hence, we can directly use these values as an
approximation for the (compound) probability of
committing an error.

The two error metrics ER and MSD ER are practically
equivalent [2]. However, both do not consider the effort
that was put into correcting errors. If users reliably
corrected every erroneous character, these two metrics
would still report the same value as if the text were entered
error free from the start. EKS ER considers the cost of
committing errors to some extent, but fails to show an
accurate picture when some errors were not corrected. Total
ER overcomes these shortcomings by computing the ratio
between the total number of incorrect and corrected
characters and the total effort to enter the text, providing
more insight into the behaviors of the participants [2]. That
is the reason Total ER yields a better approximation to ρerror
compared to the other alternatives.

Calculating ρchar
c

Previously we showed that the error recognition delay is
well described by an exponential distribution. Hence, it is
possible to calculate ρchar

c using Equation (5), which is
illustrated in Figure 4. There, one can see that almost 50%
of all errors are noticed right after they are committed. We
believe that this is a constant behavioral “constant”, which
does not vary across technologies. Hence, the data
presented in Figure 4 together with the approximation ρchar

c
should be applicable to any text entry technology where
text is entered one character at a time.

Parameter Values from Literature
We collected data from the literature to approximate the
parameters necessary to compute 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 for several popular
character-based text entry technologies. The data and the
respective sources are shown in Table 1.

The time it takes to perform a mental act depends on what
cognitive processes are involved and is highly variable from
situation to situation, or person to person. However, Kieras
argued that it can be assumed that for routine thinking these
pauses are fairly uniform in length [14]. Based on his
argument we use the same preparation 𝑻𝑻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ and
verification 𝑻𝑻𝑚𝑚𝑝𝑝𝑝𝑝𝑖𝑖𝑣𝑣𝑣𝑣ℎ time for unambiguous keyboards in
Table 1. We also use the same value for the input time
𝑻𝑻𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖ℎ for novices and experts for stylus-bases keypad
technologies. This based on the observation [18] that there
is probably only a small, perhaps negligible, difference
between novices and experts in the motor act of tapping a

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

10

key with a stylus. We did not add system-specific
parameters to the table because system specific parameters
are negligible in widely used text entry technologies. In
particular, the reliability of keyboards is extremely high and
the time to process and display a character is usually very
low, at least compared to the human parameters.

How et al. performed an experiment to derive the “repeated
keystroke time” and the “compound time of moving fingers
and pressing a key” for 12-key keypads [10]. We subtracted
the “repeated keystroke time” from the later to calculate the
movement time 𝑻𝑻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝ℎ . Finally, KSPCf is 1 for Qwerty,
virtual (stylus-based) Qwerty, or similar keyboards, as they
have dedicated keys for all characters.

s Qwerty or Dvorak
Virtual Stylus-

Based Keyboards
12-Key MultiTap

Keypad

Expertise Novice Expert Novice Expert Novice Expert
𝑻𝑻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ 1.20[14] 0.60[14] 0.951[23] 0.60[14] 1.285[19] 0.60[14]
𝑻𝑻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝ℎ 0.40[4] 0.40[4] 0.40[4] 0.40[4] 0.96[11] 0.23[9]
𝑻𝑻𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖ℎ 1.20[4] 0.12[4] 0.153[23] 0.153[23] 1.21[11] 0.39[9]
𝑻𝑻𝑚𝑚𝑝𝑝𝑝𝑝𝑖𝑖𝑣𝑣𝑣𝑣ℎ 1.20[14] 0.60[14] 0.951[23] 0.60[14] 0.411[19] .411[19]
𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝ℎ 0.018[2] 0.0576[2] 0.091[2]
KSPCf 1 1 2.0342[16]

Table 1. Human-specific parameter values for popular text
entry technologies, collected from the literature. All timings

are in seconds.

Prediction and Comparison
Based on the data in Table 1 we predicted the average time
to fix an erroneous character 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 for Qwerty, virtual, and
12-key mobile keypads. Not surprisingly, the 12-key
MultiTap keypad requires the most time with 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 of
0.7938 seconds per character, while the Qwerty keyboard
has the lowest with 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 of 0.096 seconds per character, see
Figure 5.

As cross-validation, we also computed the average time to
fix a character 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 from measured WPM values [2], using
Equation (10). The intent here was to observe if deriving
Toutput from WPM for 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 gives a closer approximation to
the original. The result is shown in Figure 5, where we can
see that both calculations yield approximately the same
result.

Figure 5. Comparison of different text entry technologies,

calculated from collected data and WPM.

SYSTEM-SPECIFIC PREDICTIONS
We mentioned before that system-specific parameters are
usually not significant in popular text entry technologies, as
common text entry technologies process input and display
the result in very small time frames. However, in some text
entry technologies the system specific parameters may
become an important factor.

Based on the data from Table 1, we gradually increased the
system error rate 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠 to analyze the effect of increasingly
unreliable technologies on the time to fix an error 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 . Our
analysis showed that 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 increases approximately linearly
as the probability of a system error increases. This is
visualized in Figure 6.

Figure 6. The increase in 𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇𝒔𝒔 as 𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔 increases.

To verify this prediction, we conducted a user study to
observe if this is true in a real-life. One can observe that the
𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 estimate for Qwerty keyboards with no system errors
(𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠 = 0) is slightly higher in Figure 6 at 0.1466 seconds
compared to the data in Figure 5, where it is 0.096 seconds.
Figure 5 shows the cost of error correction by averaging
𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 values for both novice and expert users, while Figure 6
shows only 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 values for novices. This assumes that
routine thinking pauses for general, non-expert, users are
very close to those of novices [14].

AN EXPERIMENT
The main purpose of this experiment is to observe the effect
of system errors on the overall error fixing time.

Apertures
We used a Compaq KB-0133 Qwerty keyboard and a 19"
CRT monitor at 1280×960 for our study. A Java program
logged all key presses with timestamps during text entry
and calculated user performance directly. We used 15 point
Tahoma font on the screen to present text.

Participants
Twelve participants from the university community, aged
from 22 to 46 year, average 28 years, took part in the
experiment. All of them had a minimum of 10 years Qwerty
experience and three of them were touch typist. Three of
our participants were female; all of them were right-hand
mouse users. Participants were selected to be experienced
typists and fluent English speakers to minimize learning
effects during the experiment. Towards this, people with

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

11

less than 8 years of typing experience were excluded from
the experiment.

Procedure
During the experiment, participants entered short English
phrases from MacKenzie et al.’s set [17]. This corpus was
chosen because of its high correlation with the letter
frequency in the English language. Moreover, these phrases
are widely used in recent text entry studies.

Phrases were shown on screen to the participants in a
dialog. They were asked to take the time to read and
understand the phrases in advance, then to enter them as
fast and accurate as possible, and to press the Enter key
when they were done to see the next phrase. We also
informed them that they could rest either between blocks,
sessions, or before typing a phrase. Timing started from the
entry of the first character and ended with the last, i.e., the
character before the Enter keystroke.

Five system error rate 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠 conditions were tested. The
conditions had a predefined system error rate of 1, 2, 5, 10,
and 20%. To imitate system error, the Qwerty keyboard
input system was altered to output a pre-determined amount
of erroneous characters, proportional to one of the five
mentioned error rates. Although the amounts were pre-
determined, the actual errors were generated randomly by
replacing typed characters with surrounding ones on a
Qwerty keyboard. For example, the character “h” was
randomly replaced by one of the surrounding characters
“y”, “u”, “j”, “n”, “b”, or “g”, and similarly for all other
keys. The system error conditions were divided into five
separate blocks that were randomly presented to the
participants.

Participants were informed beforehand that the used
keyboard is not 100% trustworthy and sometimes makes
mistakes in interpreting the input. They were asked to work
normally. That is, they should correct their errors as they
notice them. They were also told that they could use any
edit function, navigation key, or the mouse to correct errors.

We calculated the commonly used WPM metric to measure
text entry speed. We also calculated Total ER to calculate
error rates because this measure unifies the effects of
accuracy during and after text entry [2], which gives us a
more accurate picture of the error probability. The output
time Toutput was calculated by measuring the time interval
between two consecutive keystrokes.

Design
We used a within-subjects design for the five system error
conditions. There were three sessions. In each session
participants were asked to complete fifteen blocks
containing sixteen phrases, excluding two practice phrases.
In each session the blocks were presented randomly to
avoid asymmetric skill transfer. In summary, the design
was: 12 participants × 3 sessions per participant × 5 blocks
per session (i.e. the 5 system error conditions) × 16 phrases
per block = 2880 phrases in total.

Results
The whole experiment lasted 45-75 minutes including the
practice session, demonstration, and breaks. The highest
and lowest typing speeds per block were 13 and 93 WPM.
Similar to the data from the experiment [2] mentioned
above, participants used backspace 99% of the time to
correct their errors, even though they were able to use any
edit operation, including keyboard shortcuts and the mouse.

Entry Speed and Error Rate
An ANOVA showed that there was a significant effect of
different system error rates on both WPM (F4,11 = 86.05,
p < .0001) and Total ER (F4,11 = 787.61, p < .0001).

Figure 7. Average WPM for all system error rate 𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔

conditions.

A Tukey-Kramer multiple-comparison test showed that the
10 and 20% system error conditions had significantly lower
WPM and higher Total ER compared to the 1, 2, and 5%
conditions. As a reference, we recorded an average speed of
57.78 WPM (SD = 20) for text entry without system errors,
i.e. 0% errors. This is higher than the performance levels
for 1% and 2% errors, but not significantly so. Figure 7 and
Figure 8 show the average WPM and Total ER measures,
correspondingly, for all conditions.

Figure 8. Average Total ER for all system error rate 𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔

conditions.

The output time (Toutput)
An ANOVA showed that there was a significant effect of
different system error rates on Toutput (F4,11 = 15.54,
p < .0001). A Tukey-Kramer test showed that the 10 and
20% system error conditions had significantly higher Toutput
compared to 1, 2, and 5%. Figure 9 shows the average
Toutput for all conditions.

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

12

Figure 9. Average Toutput for all 𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔 conditions.

System Error Analysis: Empirical Validation
The experimental data also corresponds well to our model’s
primary prediction: 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 increases more or less linearly as
the probability of a system error increases. Figure 10
visualizes this relationship. There, we can see that the
experimental data fits a linear function reasonably well,
with R2 = 0.9229.

Figure 10. The increase in 𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇𝒔𝒔 as 𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔 increases.

An ANOVA showed that there was a significant effect of
different system error rates on 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 (F4,11 = 1108.42,
p < .0001).

DISCUSSION
The experimental results match the nature of predictions of
the model: The data fits a linear approximation reasonably
well. We currently do not know why fixing efforts were
higher for the 10% value. One potential explanation is that
participants may have treated both the 10% and 20%
conditions in the same way – “just an unreliable system”.
We cannot directly compare data from our experiment with
our initial data source [2], as the average WPM there is
75.84. Moreover, unlike our current experiment, that study
screened participants for high typing speeds.

It is interesting to see that low error rates (1% and 2%) had
no significant effect, even though the typing performance
was somewhat lower. The most probable reason is that such
low system error rates are indistinguishable from the
average human error rates, e.g., 1.8% for expert typists [2].
We see this as an indication that keyboard failure rates of 1-
2% are somewhat acceptable and have only a small effect
on human performance, in the order of 7 to 8%. However,
an error rate of 5%, i.e. 95% reliability, yields a noticeable

drop in performance: 26%! A reliability of 80%,
respectively 90%, approximately halves the input speed.
This underlines how important reliability is for text entry
technologies.

Another application of our model is to investigate what
happens when various system parameters, such as the time
to display a character, are changed. Properties of the input
technology, such as the average number of keystrokes per
character, also influence our model.

Generalization to Other Text Entry Technologies
We believe that our model and the predictions it generates
are directly applicable to other physical keyboards, such as
mini-Qwerty, Dvorak, and phone keypads. Assuming 100%
reliable keys, only a derivation of the value of Tcorrect for
each distinct technology in necessary.

Another potential application area for our work is screen
keyboards whose keys are too small to be hit reliably with a
human finger, because the buttons are much smaller than
the fingertip. There are currently many mobile phones that
employ touch screens together with small screen sizes. Due
to the lack of tactile feedback, such technologies are likely
fundamentally different from mini-Qwerty keyboards. One
could then model the ratio of the size of a fingertip relative
to the displayed button size as a measure of keyboard
reliability.

With this, we believe that it may be possible to predict the
effect of varying button sizes in on-screen keyboards. Thus,
it should be possible to predict some of the results of a
recent evaluation [15] of touch screen keyboards, assuming
Tcorrect has been characterized.

CONCLUSION AND FUTURE WORK
In this article we investigated human error behavior in
character-based text entry. We started by analyzing
experimental logs from a different user study. We then
created a new model for the cost of error correction. We
verified our model against values derived from the literature
as well as with a new experiment. We also discussed
potential applications of our new model.

The current model is targeted at character-based text entry
technologies. In the future, we would like to generalize the
model to word-at-a-time input technologies, such as speech,
gesture, or handwriting recognition. As the nature of error
correction there is fairly similar – there is usually some
form of “undo” operation, we are hopeful that our model
can generalize to such technologies. Also, we plan to
investigate the use of Tcorrect as a new performance metric.

REFERENCES
1. Anderson, J. R., Bothell, D. and Byrne, M. D. An

integrated theory of the mind. American Psychological
Association: Psychological Review 4, 111 (2004), 1036-
1060.

2. Arif, A. S. and Stuerzlinger, W. Analysis of text entry
performance metrics. In Proc. IEEE TIC-STH 2009.
IEEE New York (2009), 100-105.

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

13

3. Beard, D. V., Smith, D. K., and Denelsbeck, K. M.
Quick and dirty GOMS: A case study of computed
tomography interpretation. Human-Computer
Interaction 11, 2 (1996), 157-180.

4. Card, S. K., Moran, T. P., and Newell, A. The
keystroke-level model for user performance time with
interactive systems. Communications of the ACM 23, 7
(1980), 396-410.

5. Card, S. K., Moran, T. P. and Newell, A. The
Psychology of Human-Computer Interaction. Lawrence
Erlbaum, Hillsdale, NJ, USA, 1983.

6. Dunlop, M. D. and Crossan, A. Predictive text entry
methods for mobile phones. Personal and Ubiquitous
Computing 4, 2-3 (2000), 134-143.

7. Gray, W. D., John, B. E. and Atwood, M. E. The precis
of Project Ernestine or an overview of a validation of
GOMS. In Proc. CHI 1992. ACM Press (1992), 307-
312.

8. Grudin, J. T. Error patterns in skilled and novice
transcription typing. In Cooper, W. E. ed. Cognitive
Aspects of Skilled Typewriting, Springer-Verlag, New
York, NY, USA, 1984, 121-143.

9. Holleis, P., Otto, F., Hussmann, H., and Schmidt, A.
Keystroke-level model for advanced mobile phone
interaction. In Proc. CHI 2007. ACM Press (2007),
1505-1514.

10. How, Y. and Kan, M.-Y. Optimizing predictive text
entry for short message service on mobile phones. In
Proc. HCII 2005, Lawrence Erlbaum (2005).

11. Hudson, S. E., John, B. E., Knudsen, K., and Byrne, M.
D. A tool for creating predictive performance models
from user interface demonstrations. In Proc. UIST 1999.
ACM Press (1999), 93-102.

12. John, B. E., Prevas, K., Salvucci, D. D., and Koedinger,
K. Predictive human performance modeling made easy.
In Proc. CHI 2004. ACM Press (2004), 455-462.

13. Kieras, D. E. Towards a practical GOMS model
methodology for user interface design. In Helander, M.
ed. Handbook of Human-Computer Interaction,
Elsevier, Amsterdam, Netherlands, 1988.

14. Kieras, D. E. Using the keystroke-level model to
estimate execution times. Technical Report, University
of Michigan, MI, USA (1993).

15. Lee, S. and Zhai, S. The performance of touch screen
soft buttons. In Proc. CHI 2009, ACM Press (2009),
309-318.

16. MacKenzie, I. S. KSPC (keystrokes per character) as a
characteristic of text entry techniques. In Proc. HCI for
Mobile Devices 2002, Springer-Verlag (2002), 195-210.

17. MacKenzie, I. S. and Soukoreff, R. W. Phrase sets for
evaluating text entry techniques. Ext. Abstracts CHI
2003, ACM Press (2003), 754-755.

18. MacKenzie, I. S. and Zhang, S. X. An empirical
investigation of the novice experience with soft
keyboards. Behaviour & Information Technology, 20
(2001), 411-418.

19. Pavlovych, A. and Stuerzlinger, W. Model for non-
expert text entry speed on 12-button phone keypads. In
Proc. CHI 2004, ACM Press (2004), 351-358.

20. Robertson, P. S. and Black, J. B. Structure and
development of plans in computer text editing. Human-
Computer Interaction 2, 3 (1986), 201-226.

21. Seow, S. C. Information theoretic models of HCI: A
comparison of the Hick-Hyman Law and Fitts’ Law,
Human-Computer Interaction 20, 3 (2005), 315-352.

22. Silfverberg, M. Historical overview of consumer text
entry technologies. In MacKenzie, I. S. and Tanaka-
Ishii, K. eds. Text Entry Systems: Mobility,
Accessibility, Universality. Morgan Kaufmann, San
Francisco, CA, USA, 2007, 3-25.

23. Soukoreff, R. W. and MacKenzie, I. S. Theoretical
upper and lower bounds on typing speed using a stylus
and soft keyboard. Behaviour & Information
Technology, 14 (1995), 370-379.

24. Suhm, B. Empirical evaluation of interactive
multimodal error correction. In Proc. IEEE ASRU 1997,
IEEE Signal Processing Society (1997), 583-590.

25. Williams, K. E. Automating the cognitive task modeling
process: An extension to GOMS for HCI. In Proc. HCII
Poster Sessions, Abridged Proceedings (1993), 182.

26. Wobbrock, J. O. Measures of text entry performance. In
MacKenzie, I. S. and Tanaka-Ishii, K. eds. Text Entry
Systems: Mobility, Accessibility, Universality. Morgan
Kaufmann, San Francisco, CA, USA, 2007, 47-74.

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

14

	Predicting the Cost of Error Correction in Character-Based Text Entry Technologies
	ABSTRACT
	Author Keywords
	ACM Classification Keywords
	General Terms

	INTRODUCTION
	Related Work
	Contributions

	Error Correction STRATEGIES
	Data Collection

	The Cost of Error Correction
	Human Error Correction
	System-Specific Parameters
	System-Specific Parameters

	Compound Parameters
	The Probability of Errors
	The Probability of Noticing an Error ρchar
	A High-Level Model for the Cost of Error Correction
	The Cost of Error Correction vs. Error Correction Time
	Limitations of the Model

	Parameter Values
	Calculating Tcorrect
	Calculating ρerror
	Calculating ρcharc
	Parameter Values from Literature
	Prediction and Comparison

	System-Specific Predictions
	An Experiment
	Apertures
	Participants
	Procedure
	Design
	Results
	Entry Speed and Error Rate
	The output time (Toutput)
	System Error Analysis: Empirical Validation

	Discussion
	Generalization to Other Text Entry Technologies

	Conclusion and Future Work
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

