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ABSTRACT 
Researchers have developed many models to predict and 
understand human performance in text entry. Most of the 
models are specific to a technology or fail to account for 
human factors and variations in system parameters, and the 
relationship between them. Moreover, the process of fixing 
errors and its effects on text entry performance has not been 
studied. Here, we first analyze real-life text entry error 
correction behaviors. We then use our findings to develop a 
new model to predict the cost of error correction for 
character-based text entry technologies. We validate our 
model against quantities derived from the literature, as well 
as with a user study. Our study shows that the predicted and 
observed costs of error correction correspond well. At the 
end, we discuss potential applications of our new model. 
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mobile phone, error correction. 

ACM Classification Keywords 
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INTRODUCTION 
Text entry has become ubiquitous. The most popular text 
entry technologies are physical keyboards or on-screen 
keyboards operated by tapping with a finger or stylus [22]. 
There are also gesture- and speech-based technologies, and 
technologies that utilize handwriting. The later differ in 
nature as they are designed to process the input one word at 
a time, while most keyboards work at the level of one 
character at a time. The work reported here focuses on input 
technologies that are based on inputting a single character 
at a time, such as physical keyboards, on-screen keyboards, 
and gesture-based input technologies. 

Error behavior in character-based text entry is not well 
understood. All existing models for the cost of error 

correction account, at best, for errors in an indirect way. 
They either fail to account for both human- and system-
specific parameters or are not general enough to be used 
with different text input technologies. 

We start this paper by analyzing human and system error 
correction behaviors in existing text entry experiments. 
Based on that, we present a model that accounts for both 
human- and system-specific parameters to measure and 
predict the cost of error correction. We then verify our 
model in several ways. First, we measure the cost of error 
correction for three popular text entry technologies, 
Qwerty, virtual keyboard, and 12-key mobile keypad, via 
data collected from previous work. Then, we present a user 
study that verifies if the predicted impact of system errors 
on Qwerty keyboard text entry matches real results. Finally, 
we generate some predictions and speculate on future 
extensions. 

RELATED WORK 
In the 1980’s, Card et al. [5] presented the GOMS technique 
to predict user skilled performance time. They separated the 
human’s cognitive architecture into four basic components: 
goals, operators, methods for achieving the goals, and 
selection rules for choosing among competing methods for 
goals. Despite the technique’s power, it was never used on a 
large scale in the HCI community. The most likely reason is 
that the cost of first learning the technique and then 
constructing a correct model for a technology is too high to 
justify the benefits. Researchers have proposed different 
variations of GOMS to make modeling easier. For example, 
the Keystroke-Level Model (KLM) [4] eliminates all 
elements but the primitive operators. This makes KLM 
comparatively easier to learn and to construct models, but 
also makes it inadequate for multi-modal technologies. The 
Natural GOMS Language (NGOMSL) [13] is a high-level 
syntax for GOMS and based on cognitive complexity 
theory. Constructing NGOMSL models require performing 
a top-down, breadth-first expansion of the user’s top-level 
goals into methods and further into primitive operators. 
Mastering the NGOMSL technique requires significant 
effort, as does the construction of a correct model. The 
Cognitive-Perceptual-Motor GOMS (CPM-GOMS) is based 
on a model human processor [7]. Unlike other variations of 
GOMS, CPM-GOMS is capable of modeling multitasking 
behaviors, because it does not enforce user interaction as a 
serial process. But CPM-GOMS also requires a thorough 
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understanding of GOMS and the human cognitive 
architecture. 

ACT-R [1] is a cognitive architecture that aims to define 
both the basic, irreducible cognitive as well as perceptual 
operations that enable the human mind. As such, it looks 
like a programming language at first glance. Constructing 
an ACT-R model requires a detailed model of a cognitive 
task, which means significant amount of expertise, time, 
and effort. Moreover, the original form of ACT-R does not 
handle motor and perceptual systems correctly, although 
recent versions rectify some of the shortcomings. 

To overcome the complexity of the model construction 
process, rapid modeling tools, such as QGOMS [3] and 
CAT-HCI [25], have been developed. The problem with 
these tools is that, once a model has been created, it is hard 
to change the model. Then, in case of upgrades or design 
changes, the developers have to either construct a new 
model or have to calculate the effect of that change by 
hand. Other tools, such as CRITIQUE [11], depend on 
research tools that are not commonly available. John et al. 
proposed a new system to overcome these problems by 
integrating HTML mock-ups with ACT-R [12]. This, 
however, limits the scope to web browsers. 

There are several models that predict text entry speed or 
performance. But none of them account for the cost of error 
correction. The KLM model mentioned above can predict 
text entry performance, by counting keystrokes and other 
low-level operations, such as the mental preparation and the 
system’s response time. A similar model was presented by 
Dunlop et al. [6] to forecast the performance of predictive 
text entry technologies, using three timing elements from 
KLM, though their timing elements were measured for full 
size keyboards. How et al. [10] improved that model by 
defining thirteen operators that map directly to operations 
on a mobile keypad for different text entry technologies. 
Later, Hollies et al. [9] presented another keystroke-level 
model to measure and predict mobile phone interactions. 
Their model considers even advanced interactions, such as 
using the embedded camera. Soukoreff et al. presented a 
theoretical model to predict upper and lower-bound entry 
speeds for using a stylus to tap on soft keyboards [23]. The 
model is based on the Hick-Hyman law for choice reaction 
time [21], Fitts’ law for rapid aimed movements [21], and 
English linguistic tables for the relative frequencies of 
digrams. All of these models predict the performance of 
particular text entry technologies, without accounting for 
error correction methods and behavior. Several other 
metrics to characterize a techniques’ performance exist. 
However, we do not discuss this here, as reviews of these 
metrics are available elsewhere [2, 26]. 

In 1997, Suhm developed an interactive multimodal error 
correction method for speech recognition [24]. His method 
can account for switches between different input modalities, 
such as continuous speech, oral spelling, hand-drawn 
gestures, choosing from a list of alternatives, cursive 

handwriting, or typing. To predict the performance of his 
technique he introduced a high-level model for the cost of 
error correction, as existing models cannot predict the 
performance of a multimodal technique. The model 
expresses the users’ effort on error correction as a 
compound measure of the time required by the user to 
correct errors, the response time of the system, the accuracy 
of the automatic interpretation of corrected input, and the 
naturalness of the interaction. To overcome the model’s 
technology dependency to some degree, Suhm separates 
human-specific parameters from system-specific ones. The 
model, however, does not contain important human-specific 
parameters, such as the visual verification time, human 
movement time, and the probability of committing an error. 
Moreover, the relationships between various parameters 
were not clearly explained. 
Contributions 
First, we present an analysis of real-life error correction 
behaviors and strategies. We used data from a previously 
reported experiment to analyze how error correction is 
carried out in text entry. We identified the most frequently 
used correction operation, the probability of making errors 
during the correction process, the effect of system-specific 
delays and errors, and so forth. We believe this analysis will 
help researchers and practitioners to understand the error 
correction process better. 

We then use our findings to model error correction 
behavior. The initial purpose was to observe how different 
levels of accuracy, both human- and system-specific error 
levels, affect the error correction process and text entry 
itself. We verify our model through cross-comparisons with 
data from the literature. In addition, we describe different 
ways of calculating or deriving the parameter values for the 
model. Moreover, we performed an experiment to confirm 
the predictions. Some text entry technologies are not 
accurate, i.e. have significant system-specific error levels. 
We use our model to predict the effect of different level of 
system-specific errors and show that the experimental 
results correspond well to the predictions. 

ERROR CORRECTION STRATEGIES 
In text entry technologies, errors can be corrected with two 
different strategies: character-level or word-level. In 
character-level correction any erroneous character is 
corrected right away. In word-level correction, erroneous 
key presses are corrected after several other keystrokes 
have happened following the incorrect one. This kind of 
strategy is used when experienced users chunk their input, 
or when they do not verify their input right away. Almost 
all popular text entry technologies provide methods to 
correct errors that are committed with both strategies [8]. 
However, there is no data how frequent these two strategies 
occur in practice. 

Data Collection 
We obtained raw input logs from a recent text entry 
experiment [2]. There, the main purpose was to observe the 
effect of different error correction conditions on various 
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text entry performance metrics, such as Words per Minute 
(WPM) and Keystroke per Character (KSPC), and to 
investigate the relationship between them. 

In that experiment, 12 participants, aged from 22 to 45, 
average 27 years, participated. There were 3 sessions, 9 
blocks in each session, with 20 phrases per block. The 
experiment used a Qwerty keyboard and the set of English 
phrases from MacKenzie et al. [17]. The participants were 
fluent English speakers and reasonably experienced touch 
typists (50 WPM or above). 

That experiment analyzed three different error correction 
conditions: none, recommended, and forced. The none 
condition actively prevented participants from correcting 
errors, while the forced condition required uses to correct 
all errors. The recommended condition encouraged normal 
user behavior. That is, participants typed the presented 
phrase as fast and accurate as possible. Errors were 
corrected as users noticed them. Participants were informed 
that they could correct errors with their preferred method, 
including keyboard shortcuts, navigation keys, backspace, 
delete, or the mouse. 

From the detailed event logs of the experiment, we 
extracted the data for the recommended condition. As the 
experiment used a counterbalanced design, we did not 
worry about asymmetric skill transfers. We then used the 
number of backspace characters in correction episodes to 
detect how quickly participants noticed and fixed errors. 
This was motivated by the fact that an analysis showed that 
99% of the time participants corrected their errors with the 
backspace key. The remaining 1% was keyboard shortcuts, 
navigation and delete keys, or the mouse. We acknowledge 
that this high percentage of backspace usage may hold only 
for short English phrases and not for longer texts. However, 
other work shows that text editing is fundamentally 
different from text entry [20] and involves repeated 
problems solving and versatile planning. This makes editing 
unpredictable and hard to model. Thus, text entry correction 
in longer segments of text is virtually indistinguishable 
from general text editing. To remove this confound, we 
used data for short English phrases and all analysis was 
limited to error correction episodes involving backspace. 

Overall, our analysis indicates that the proportion of error 
correction strategies is balanced. On average 50.29% 
(SD = 7.2) of all error correction efforts were character-
level, and the remaining 49.71% (SD = 7.2) were word-
level corrections. Figure 1 illustrates the different strategies 
of error correction by participant. 

We further analyzed the word-level corrections to calculate 
more precisely when errors got noticed and corrected. Our 
results indicate that 96.10% of all times an erroneous 
character got noticed and fixed between the second and 
fifth character, counted from the erroneous one, and the rest 
got noticed within twelve characters. We also noticed that 
some errors were identified and corrected only when 
participants visually scanned the entered text after they 

were finished with the phrase. We did not consider these 
correction operations in our analysis, as this behavior 
occurred rarely, in 1.7% of all cases. 

 
Figure 1. Character- and word-level error correction. 

Sometimes errors happened during the error correction 
process. An example of such an incident would be the user 
first typing “b” instead of the desired “a”, and then 
erroneously typing “c” while attempting to fix the previous 
error. Our analysis shows that on average 6.68% 
(SD = 3.97) of the total errors were committed during the 
correction process. Of these, 86.11% were corrected in the 
second try, and the rest on the third iteration. We were not 
able to find an incident where more than three tries were 
required to fix an error. 

THE COST OF ERROR CORRECTION 
Error correction involves both human-specific elements, 
such as the time to verify a correction, as well as system-
specific elements, such as the key sequence required to 
replace a wrong character. 

 
Figure 2. A flowchart representation of text entry error 

correction behavior. 

Human Error Correction 
It is necessary to have a better understanding of human 
error correction behavior to create a meaningful model. 
From our above analysis of error correction behaviors we 
found that the correction process follows a specific pattern. 

Users usually immediately verify what they have typed and 
correct errors right away, i.e. character-level correction. 
However, users also chunk their input and verify the result 
only after typing a few characters or even the whole word. 
In the later scenario, denoted word-level correction, users 
navigate to the area where they have noticed an error, 
correct it, and then resume their work. As determined by 
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our analysis of human error correction behavior, the 
predominant strategy is to use the backspace key for both 
character-level and word-level corrections! There seems to 
be no fundamental difference between the two strategies, 
except that rewriting multiple erased characters is an 
integral part of word-level correction, which scales linearly 
with the number of characters after which the error was 
noticed. Consequently, we see no reason to distinguish 
between character-level and word-level error correction 
behaviors in our model. 

Error correction requires additional cognitive (planning) 
and motor (hand or finger movement) steps compared to 
error-free text entry behavior. Figure 2 illustrates the 
expected sequence of steps for normal text entry and error 
corrections in a flowchart. As illustrated, there are the 
following human-specific parameters for error correction: 

• 𝑻𝑻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ , the preparation time, is the cognitive planning and 
decision time to start or resume a task. 

• 𝑻𝑻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝ℎ , the movement time, is the time required by the user 
to move their finger(s) to the intended key(s). 

• 𝑻𝑻𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖ℎ , the input time, is the time necessary for the user to 
perform a single keystroke or similar operation, such as 
stylus tap, mouse click, or a gesture. 

• 𝑻𝑻𝑚𝑚𝑝𝑝𝑝𝑝𝑖𝑖𝑣𝑣𝑣𝑣ℎ , the verification time, is the cognitive time 
required to verify that output matches input. 

• 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝ℎ , the human-specific error probability, is the 
probability of users making an error when performing a 
keystroke or similar operation. 

 
Figure 3. Input handling in text entry technologies. 

System-Specific Parameters 
Text entry technologies use both open loop and closed loop 
systems. In closed or feedback loop systems, inputs trigger 
the processes and the processes control the outputs. For 
example, while entering a character, a keystroke triggers the 
process that decides what character to display on the screen. 
On the other hand, in open loop systems, user inputs only 
trigger the processes that convert the input to the output, 
while the user can continue working. In other words, an 
open loop system does not directly monitor the output of 
the process that it is controlling. In some text entry 
technologies, such as handwriting or speech recognition, a 
specific command or operation may be processed in the 
background instead of immediately displaying the result. 
One potential reason is that e.g. many handwriting 

recognition methods cannot be performed fast enough. 
Figure 3 illustrates the input handling of the text entry 
technologies in a flowchart, where the shaded tasks are 
performed only in closed loop scenarios. 

Depending on the technology and system, some recognition 
tasks may take significant time. That is why it is important 
to identify system specific parameters that may play a role 
in error correction procedures. 

System-Specific Parameters 
• s, the system, is a specific text entry technology, defined 

by a combination of software and hardware. Examples 
are Qwerty, MultiTap, T9, etc. 

• 𝑻𝑻𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑠𝑠 , the system output time, is the time necessary for 
the system s to process a keystroke or similar operations 
and output the result. 

• 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠 , the system-specific error probability, is the 
probability of the system making an error when 
processing an input action. Some technologies are 
practically error-free or suffer only from very rare key 
malfunction. Other technologies, especially recognition 
technologies, have to distinguish between potentially 
fairly similar forms of input and exhibit significant error 
rates. For example, in handwriting recognition 
technologies, it is a common system error to misidentify a 
“u” as “v”, and vice versa. 

Compound Parameters 
We define the following compound parameter based on the 
human and system-specific parameters defined above: 

• Toutput, or output time, is the sum of the time to correct a 
character entered by the user and the time to process and 
display that input through the system. 
𝑻𝑻𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 =   𝑻𝑻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝ℎ + �𝑻𝑻𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖ℎ ∗ �𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑣𝑣 + 1�� + 𝑻𝑻𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑠𝑠      (1) 

Here, KSPCf is the Keystrokes per Character (KSPC) metric 
calculated using a corpus’s letter-frequencies. This metric is 
commonly used in text entry studies to measure the average 
number of keystrokes required to generate a character of 
text for a given text entry technology. 

We scale 𝑻𝑻𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖ℎ  with KSPCf because there are technologies 
where it takes more or less than one keystroke to enter a 
character, e.g. MultiTap or T9. In unambiguous text entry 
technologies, such as Qwerty or Dvorak, it takes exactly a 
single keystroke to input a character. The “+ 1” term after 
KSPCf accounts for the fact that character-based text entry 
technologies have a dedicated delete or backspace key. This 
is justified, as 99% of all error corrections episodes used 
this backspace key to delete an erroneous character, see 
above. KSPCf can be calculated using the following 
equation [16]: 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑣𝑣 = ∑(𝑲𝑲𝑐𝑐ℎ𝑎𝑎𝑝𝑝 ∗𝑭𝑭𝑐𝑐ℎ𝑎𝑎𝑝𝑝 )
∑(𝑪𝑪𝑐𝑐ℎ𝑎𝑎𝑝𝑝 ∗𝑭𝑭𝑐𝑐ℎ𝑎𝑎𝑝𝑝 )

         (2) 

Here, Kchar is the number of keystrokes required to enter a 
character, Fchar is the frequency of the character in the 
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corpus, and Cchar is the length of the input, which is 1 for 
characters. Cchar ensures that one can generalize this notion 
to input of more than a single character, e.g. words [16]. 

• Tcorrect, the correction time, is the compound of the 
human and system time necessary to correct a single 
erroneous character in a single attempt. By adding the 
effort for the mental preparation necessary to fix an error 
to Toutput, we arrive at: 

𝑻𝑻𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖 =  𝑻𝑻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ + 𝑻𝑻𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖         (3) 

We add the mental preparation time 𝑻𝑻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ  as error 
correction involves significant amount of cognitive 
planning and decision making, including the time to 
mentally “change tracks”. 

The Probability of Errors 
The whole probability for an error to happen can be 
expressed as: 

• ρerror, the compound of the probability of either the 
system, or the user, or both making an error: 

𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 =  (𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝ℎ + 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠 ) − (𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝ℎ ∗  𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠 )      (4) 

Here, 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝ℎ ∗  𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠   represents the probability of a 
simultaneous error by both the system and the user. We 
subtract this, as despite the fact that both parties have 
committed mistakes, such as the user entering a wrong 
character and the system misinterpreting that, everything 
results in only a single erroneous character. 

The Probability of Noticing an Error ρchar
 

We discussed in a previous section that errors are not 
always noticed right after they were committed. In-depth 
analysis of the experimental logs indicates that the 
probability that an error will be identified after c characters 
is subject to exponential decay. This is illustrated in Figure 
4, where we can also see that the data can be fit quite well 
with an exponential function (R2 = 0.97). We speculate the 
out of line data point after the second character to be a 
behavioral pattern that does not follow the general trend. 
However, we do not have enough data to be able to make a 
definite statement on this.  

 
Figure 4. The probability of noticing an error after the c-th 

character ρchar
c is exponentially distributed. 

Hence, we propose that the probability of noticing an error 
after c characters can be modeled accurately by an 
exponential distribution. More precisely, c is a nonnegative 

integer and c = 1 means that the error was noticed right 
after committing it. 

• ρchar
c, is the probability of noticing an error after c 

characters: 

𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝 𝑐𝑐 = 𝑎𝑎 ∗ 𝑝𝑝𝑏𝑏𝑐𝑐          (5) 

Where, e is Euler’s number (e ≈ 2.718), and a and b are 
constants that are determined by the curve fitting process. 

A High-Level Model for the Cost of Error Correction 
Based on the above analysis of error behavior logs, as well 
as the analysis of human error correction strategies and the 
relationship of human- and system-specific parameters we 
can present a new model for the cost of error correction: 

• 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 , the average time it takes to fix errors using a text 
entry technology s. 

𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 = ∑ �𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 𝑖𝑖 ∗ ∑ (𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝 𝑐𝑐 ∗ 𝒄𝒄 ∗ 𝑻𝑻𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖 )∞
𝑐𝑐=1 �∞

𝑖𝑖=1        (6) 

Here, i expresses the number of corrections. We multiply c 
with Tcorrect as the number of necessary correction 
operations increases with c, the number of characters after 
an error was noticed. Notice that 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  itself as well as the 
central term are both convergent series. Using the general 
formula for geometric sums we get: 

∑ (𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝 𝑐𝑐 ∗ 𝒄𝒄 ∗ 𝑻𝑻𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖 )∞
𝑐𝑐=1 =  𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝

(1−𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝 )2 ∗ 𝑻𝑻𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖       (7) 

Using Equation (7) and solving for 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  we get: 

𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 = 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 ∗𝑻𝑻𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖 ∗ 𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝
(1−𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 )(1−𝝆𝝆𝑐𝑐ℎ𝑎𝑎𝑝𝑝 )2         (8) 

Equation (8) expresses the (extra) cost of error correction 
per character, in seconds or milliseconds. As values for 
𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝  are likely smaller than 20% in any practically useful 
system and using a first order approximation, we can state 
that this means that that error correction effort is 
approximately directly proportional to the reliability of the 
user and the system, see also Figure 6. 

The Cost of Error Correction vs. Error Correction Time 
Note that 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  does not predict the time it takes to correct n 
characters of errors, instead it predicts the extra time it will 
require on average per character to fix errors with a given 
text entry technology - regardless if a mistake was made on 
that character or not. For example, if we have x characters 
in a phrase then we can say on average it will take 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  
seconds more per character with text entry technology s. 
Tcorrect, on the other hand, predicts the time necessary to 
correct an erroneous character in a single attempt, see 
Equation (3). Therefore, designers can use this term as a 
measure for the error fixing time for a specific technology. 

Limitations of the Model 
Our model targets the cost of error correction in character-
based technologies where texts are inputted one character at 
a time. As such, it cannot be applied directly to word-based 
technologies, such as, speech, gesture, or handwriting 
recognition, where texts are inputted word by word. This 
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model will also not work without changes for multi-modal 
or predictive technologies and scanning keyboards. The 
reason is that there the process of entering text and 
correcting errors is different from character-based 
technologies. This model also does not account for 
environmental distractions, such as noise or motion. But we 
point out that practically all models for input tasks in HCI 
assume a distraction-free environment. 

PARAMETER VALUES 
Obtaining the necessary parameters for our new model 
typically requires controlled experiments. Some of our 
parameter values are largely independent of a specific 
technology. This is especially true for the human-specific 
ones. Other values can be collected from the existing 
literature on popular text entry technologies. However, 
some values need to be found experimentally, e.g. if new 
technologies are tested, or for existing ones that have not 
been well studied. To help in some of these situations, we 
present several alternatives to derive various parameters 
from commonly used text entry performance metrics. 

Calculating Tcorrect  
The Words per Minute (WPM) metric is the most frequently 
used empirical measure of text entry performance. WPM 
measures how many words can be entered per minute. It is 
usually defined as: 

𝑊𝑊𝐾𝐾𝑊𝑊 = |𝑇𝑇|−1
𝐾𝐾

∗ 60 ∗ 1
5
         (9) 

Here, S is time in seconds measured from the first key press 
to the last, including backspaces and other edit and modifier 
keys. The constant 60 is the number of seconds per minute, 
and the factor of 1/5 accounts for the length of a word [26], 
as it is common practice to regard a word as five characters 
including spaces, numbers, and other printable characters. 
Note that S is measured from the entry of the very first 
character to the last, which means that the entry of the first 
character is never timed, which is the motivation for the 
term “– 1” in the numerator of Equation (9).  

We want to mention here again that a previous survey 
showed that text entry experiments are conducted with one 
of three error correction conditions [2]: none – where 
participants are not allowed to correct errors, recommended 
– where participants are asked to correct their errors as they 
identify them, and finally forced – where participants are 
forced to correct each error. But that study also showed that 
these correction conditions do not have a significant effect 
on WPM. Therefore, it is possible to approximate 𝑻𝑻𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖  
from WPM using the following equation: 

𝑻𝑻𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 ≈   60
𝑊𝑊𝐾𝐾𝑊𝑊∗5

∗ �𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑣𝑣 + 1�       (10) 

Here, 60
𝑊𝑊𝐾𝐾𝑊𝑊∗5

 is the time it takes to enter a character, see the 
derivation of Equation (9). We did not add the preparation 
time 𝑻𝑻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ , because it has already been accounted for in the 
WPM value. Moreover, WPM does not differentiate 
between the number of keystrokes made, the cognitive, or 

the motor time during text entry. Based on this 
approximation, we can estimate Tcorrect using Equation (3). 

Calculating ρerror 
It is standard practice to present error rates along with WPM 
when introducing or comparing text entry technologies. 
Error rates are usually calculated with one of four error 
metrics [2]: Error Rate (ER), Erroneous Keystrokes Error 
Rate (EKS ER), Total Error Rate (Total ER), and Minimum 
String Distance Error Rate (MSD ER). These metrics 
represent the combined errors committed by the human and 
the system. Hence, we can directly use these values as an 
approximation for the (compound) probability of 
committing an error. 

The two error metrics ER and MSD ER are practically 
equivalent [2]. However, both do not consider the effort 
that was put into correcting errors. If users reliably 
corrected every erroneous character, these two metrics 
would still report the same value as if the text were entered 
error free from the start. EKS ER considers the cost of 
committing errors to some extent, but fails to show an 
accurate picture when some errors were not corrected. Total 
ER overcomes these shortcomings by computing the ratio 
between the total number of incorrect and corrected 
characters and the total effort to enter the text, providing 
more insight into the behaviors of the participants [2]. That 
is the reason Total ER yields a better approximation to ρerror 
compared to the other alternatives. 

Calculating ρchar
c 

Previously we showed that the error recognition delay is 
well described by an exponential distribution. Hence, it is 
possible to calculate ρchar

c using Equation (5), which is 
illustrated in Figure 4. There, one can see that almost 50% 
of all errors are noticed right after they are committed. We 
believe that this is a constant behavioral “constant”, which 
does not vary across technologies. Hence, the data 
presented in Figure 4 together with the approximation ρchar

c 
should be applicable to any text entry technology where 
text is entered one character at a time. 

Parameter Values from Literature 
We collected data from the literature to approximate the 
parameters necessary to compute 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  for several popular 
character-based text entry technologies. The data and the 
respective sources are shown in Table 1. 

The time it takes to perform a mental act depends on what 
cognitive processes are involved and is highly variable from 
situation to situation, or person to person. However, Kieras 
argued that it can be assumed that for routine thinking these 
pauses are fairly uniform in length [14]. Based on his 
argument we use the same preparation 𝑻𝑻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ  and 
verification 𝑻𝑻𝑚𝑚𝑝𝑝𝑝𝑝𝑖𝑖𝑣𝑣𝑣𝑣ℎ  time for unambiguous keyboards in 
Table 1. We also use the same value for the input time 
𝑻𝑻𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖ℎ  for novices and experts for stylus-bases keypad 
technologies. This based on the observation [18] that there 
is probably only a small, perhaps negligible, difference 
between novices and experts in the motor act of tapping a 

CHI 2010: EPIC #FAIL April 10–15, 2010, Atlanta, GA, USA

10



 

 

key with a stylus. We did not add system-specific 
parameters to the table because system specific parameters 
are negligible in widely used text entry technologies. In 
particular, the reliability of keyboards is extremely high and 
the time to process and display a character is usually very 
low, at least compared to the human parameters. 

How et al. performed an experiment to derive the “repeated 
keystroke time” and the “compound time of moving fingers 
and pressing a key” for 12-key keypads [10]. We subtracted 
the “repeated keystroke time” from the later to calculate the 
movement time 𝑻𝑻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝ℎ . Finally, KSPCf is 1 for Qwerty, 
virtual (stylus-based) Qwerty, or similar keyboards, as they 
have dedicated keys for all characters. 

s Qwerty or Dvorak 
Virtual Stylus-

Based Keyboards 
12-Key MultiTap 

Keypad 

Expertise Novice Expert Novice Expert Novice Expert 
𝑻𝑻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ  1.20[14] 0.60[14] 0.951[23] 0.60[14] 1.285[19] 0.60[14] 
𝑻𝑻𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝ℎ  0.40[4] 0.40[4] 0.40[4] 0.40[4] 0.96[11] 0.23[9] 
𝑻𝑻𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖ℎ  1.20[4] 0.12[4] 0.153[23] 0.153[23] 1.21[11] 0.39[9] 
𝑻𝑻𝑚𝑚𝑝𝑝𝑝𝑝𝑖𝑖𝑣𝑣𝑣𝑣ℎ  1.20[14] 0.60[14] 0.951[23] 0.60[14] 0.411[19] .411[19] 
𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝ℎ  0.018[2] 0.0576[2] 0.091[2] 
KSPCf 1 1 2.0342[16] 

Table 1. Human-specific parameter values for popular text 
entry technologies, collected from the literature. All timings 

are in seconds. 

Prediction and Comparison 
Based on the data in Table 1 we predicted the average time 
to fix an erroneous character 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  for Qwerty, virtual, and 
12-key mobile keypads. Not surprisingly, the 12-key 
MultiTap keypad requires the most time with 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  of 
0.7938 seconds per character, while the Qwerty keyboard 
has the lowest with 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  of 0.096 seconds per character, see 
Figure 5. 

As cross-validation, we also computed the average time to 
fix a character 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  from measured WPM values [2], using 
Equation (10). The intent here was to observe if deriving 
Toutput from WPM for 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  gives a closer approximation to 
the original. The result is shown in Figure 5, where we can 
see that both calculations yield approximately the same 
result. 

 
Figure 5. Comparison of different text entry technologies, 

calculated from collected data and WPM. 

SYSTEM-SPECIFIC PREDICTIONS 
We mentioned before that system-specific parameters are 
usually not significant in popular text entry technologies, as 
common text entry technologies process input and display 
the result in very small time frames. However, in some text 
entry technologies the system specific parameters may 
become an important factor. 

Based on the data from Table 1, we gradually increased the 
system error rate 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠  to analyze the effect of increasingly 
unreliable technologies on the time to fix an error 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠 . Our 
analysis showed that 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  increases approximately linearly 
as the probability of a system error increases. This is 
visualized in Figure 6. 

 
Figure 6. The increase in 𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇𝒔𝒔  as 𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔  increases. 

To verify this prediction, we conducted a user study to 
observe if this is true in a real-life. One can observe that the 
𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  estimate for Qwerty keyboards with no system errors 
(𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠 = 0) is slightly higher in Figure 6 at 0.1466 seconds 
compared to the data in Figure 5, where it is 0.096 seconds. 
Figure 5 shows the cost of error correction by averaging 
𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  values for both novice and expert users, while Figure 6 
shows only 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  values for novices. This assumes that 
routine thinking pauses for general, non-expert, users are 
very close to those of novices [14]. 

AN EXPERIMENT 
The main purpose of this experiment is to observe the effect 
of system errors on the overall error fixing time. 

Apertures 
We used a Compaq KB-0133 Qwerty keyboard and a 19" 
CRT monitor at 1280×960 for our study. A Java program 
logged all key presses with timestamps during text entry 
and calculated user performance directly. We used 15 point 
Tahoma font on the screen to present text.  

Participants 
Twelve participants from the university community, aged 
from 22 to 46 year, average 28 years, took part in the 
experiment. All of them had a minimum of 10 years Qwerty 
experience and three of them were touch typist. Three of 
our participants were female; all of them were right-hand 
mouse users. Participants were selected to be experienced 
typists and fluent English speakers to minimize learning 
effects during the experiment. Towards this, people with 
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less than 8 years of typing experience were excluded from 
the experiment. 

Procedure 
During the experiment, participants entered short English 
phrases from MacKenzie et al.’s set [17]. This corpus was 
chosen because of its high correlation with the letter 
frequency in the English language. Moreover, these phrases 
are widely used in recent text entry studies. 

Phrases were shown on screen to the participants in a 
dialog. They were asked to take the time to read and 
understand the phrases in advance, then to enter them as 
fast and accurate as possible, and to press the Enter key 
when they were done to see the next phrase. We also 
informed them that they could rest either between blocks, 
sessions, or before typing a phrase. Timing started from the 
entry of the first character and ended with the last, i.e., the 
character before the Enter keystroke. 

Five system error rate 𝝆𝝆𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠  conditions were tested. The 
conditions had a predefined system error rate of 1, 2, 5, 10, 
and 20%. To imitate system error, the Qwerty keyboard 
input system was altered to output a pre-determined amount 
of erroneous characters, proportional to one of the five 
mentioned error rates. Although the amounts were pre-
determined, the actual errors were generated randomly by 
replacing typed characters with surrounding ones on a 
Qwerty keyboard. For example, the character “h” was 
randomly replaced by one of the surrounding characters 
“y”, “u”, “j”, “n”, “b”, or “g”, and similarly for all other 
keys. The system error conditions were divided into five 
separate blocks that were randomly presented to the 
participants. 

Participants were informed beforehand that the used 
keyboard is not 100% trustworthy and sometimes makes 
mistakes in interpreting the input. They were asked to work 
normally. That is, they should correct their errors as they 
notice them. They were also told that they could use any 
edit function, navigation key, or the mouse to correct errors. 

We calculated the commonly used WPM metric to measure 
text entry speed. We also calculated Total ER to calculate 
error rates because this measure unifies the effects of 
accuracy during and after text entry [2], which gives us a 
more accurate picture of the error probability. The output 
time Toutput was calculated by measuring the time interval 
between two consecutive keystrokes. 

Design 
We used a within-subjects design for the five system error 
conditions. There were three sessions. In each session 
participants were asked to complete fifteen blocks 
containing sixteen phrases, excluding two practice phrases. 
In each session the blocks were presented randomly to 
avoid asymmetric skill transfer. In summary, the design 
was: 12 participants × 3 sessions per participant × 5 blocks 
per session (i.e. the 5 system error conditions) × 16 phrases 
per block = 2880 phrases in total. 

Results 
The whole experiment lasted 45-75 minutes including the 
practice session, demonstration, and breaks. The highest 
and lowest typing speeds per block were 13 and 93 WPM. 
Similar to the data from the experiment [2] mentioned 
above, participants used backspace 99% of the time to 
correct their errors, even though they were able to use any 
edit operation, including keyboard shortcuts and the mouse.  

Entry Speed and Error Rate 
An ANOVA showed that there was a significant effect of 
different system error rates on both WPM (F4,11 = 86.05, 
p < .0001) and Total ER (F4,11 = 787.61, p < .0001). 

 
Figure 7. Average WPM for all system error rate 𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔  

conditions. 

A Tukey-Kramer multiple-comparison test showed that the 
10 and 20% system error conditions had significantly lower 
WPM and higher Total ER compared to the 1, 2, and 5% 
conditions. As a reference, we recorded an average speed of 
57.78 WPM (SD = 20) for text entry without system errors, 
i.e. 0% errors. This is higher than the performance levels 
for 1% and 2% errors, but not significantly so. Figure 7 and 
Figure 8 show the average WPM and Total ER measures, 
correspondingly, for all conditions. 

 
Figure 8. Average Total ER for all system error rate 𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔  

conditions. 

The output time (Toutput) 
An ANOVA showed that there was a significant effect of 
different system error rates on Toutput (F4,11 = 15.54, 
p < .0001). A Tukey-Kramer test showed that the 10 and 
20% system error conditions had significantly higher Toutput 
compared to 1, 2, and 5%. Figure 9 shows the average 
Toutput for all conditions. 
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Figure 9. Average Toutput for all 𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔  conditions. 

System Error Analysis: Empirical Validation 
The experimental data also corresponds well to our model’s 
primary prediction: 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  increases more or less linearly as 
the probability of a system error increases. Figure 10 
visualizes this relationship. There, we can see that the 
experimental data fits a linear function reasonably well, 
with R2 = 0.9229. 

 
Figure 10. The increase in 𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇𝒔𝒔  as 𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔  increases. 

An ANOVA showed that there was a significant effect of 
different system error rates on 𝑻𝑻𝑣𝑣𝑖𝑖𝑓𝑓 𝑠𝑠  (F4,11 = 1108.42, 
p < .0001). 

DISCUSSION 
The experimental results match the nature of predictions of 
the model: The data fits a linear approximation reasonably 
well. We currently do not know why fixing efforts were 
higher for the 10% value. One potential explanation is that 
participants may have treated both the 10% and 20% 
conditions in the same way – “just an unreliable system”. 
We cannot directly compare data from our experiment with 
our initial data source [2], as the average WPM there is 
75.84. Moreover, unlike our current experiment, that study 
screened participants for high typing speeds. 

It is interesting to see that low error rates (1% and 2%) had 
no significant effect, even though the typing performance 
was somewhat lower. The most probable reason is that such 
low system error rates are indistinguishable from the 
average human error rates, e.g., 1.8% for expert typists [2]. 
We see this as an indication that keyboard failure rates of 1-
2% are somewhat acceptable and have only a small effect 
on human performance, in the order of 7 to 8%. However, 
an error rate of 5%, i.e. 95% reliability, yields a noticeable 

drop in performance: 26%! A reliability of 80%, 
respectively 90%, approximately halves the input speed. 
This underlines how important reliability is for text entry 
technologies. 

Another application of our model is to investigate what 
happens when various system parameters, such as the time 
to display a character, are changed. Properties of the input 
technology, such as the average number of keystrokes per 
character, also influence our model.  

Generalization to Other Text Entry Technologies 
We believe that our model and the predictions it generates 
are directly applicable to other physical keyboards, such as 
mini-Qwerty, Dvorak, and phone keypads. Assuming 100% 
reliable keys, only a derivation of the value of Tcorrect for 
each distinct technology in necessary. 

Another potential application area for our work is screen 
keyboards whose keys are too small to be hit reliably with a 
human finger, because the buttons are much smaller than 
the fingertip. There are currently many mobile phones that 
employ touch screens together with small screen sizes. Due 
to the lack of tactile feedback, such technologies are likely 
fundamentally different from mini-Qwerty keyboards. One 
could then model the ratio of the size of a fingertip relative 
to the displayed button size as a measure of keyboard 
reliability. 

With this, we believe that it may be possible to predict the 
effect of varying button sizes in on-screen keyboards. Thus, 
it should be possible to predict some of the results of a 
recent evaluation [15] of touch screen keyboards, assuming 
Tcorrect has been characterized. 

CONCLUSION AND FUTURE WORK 
In this article we investigated human error behavior in 
character-based text entry. We started by analyzing 
experimental logs from a different user study. We then 
created a new model for the cost of error correction. We 
verified our model against values derived from the literature 
as well as with a new experiment. We also discussed 
potential applications of our new model. 

The current model is targeted at character-based text entry 
technologies. In the future, we would like to generalize the 
model to word-at-a-time input technologies, such as speech, 
gesture, or handwriting recognition. As the nature of error 
correction there is fairly similar – there is usually some 
form of “undo” operation, we are hopeful that our model 
can generalize to such technologies. Also, we plan to 
investigate the use of Tcorrect as a new performance metric. 
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