
Learning on the Job: Characterizing the Programming
Knowledge and Learning Strategies of Web Designers

Brian Dorn and Mark Guzdial
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30332-0760
{dorn, guzdial}@cc.gatech.edu

ABSTRACT
This paper reports on a study of professional web design-
ers and developers. We provide a detailed characterization
of their knowledge of fundamental programming concepts
elicited through card sorting. Additionally, we present qual-
itative findings regarding their motivation to learn new con-
cepts and the learning strategies they employ. We find a high
level of recognition of basic concepts, but we identify a num-
ber of concepts that they do not fully understand, consider
difficult to learn, and use infrequently. We also note that
their learning process is motivated by work projects and of-
ten follows a pattern of trial and error. We conclude with
implications for end-user programming researchers.

Author Keywords
Web development, informal learning

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—training, help, and documentation; K.3.2 Computers
and Education: Computer and Information Science Educa-
tion—literacy, computer science education

General Terms
Human Factors

INTRODUCTION
Computing for everyone, or universal access to and under-
standing of computational processes, has become a popu-
lar mission. In the computing education community, calls
for contextualized learning and Wing’s vision of computa-
tional thinking [35] have served as touchstones in efforts to
broaden participation and rethink curricula at the elemen-
tary, secondary, and post-secondary levels. In HCI, end-user
programming researchers are furthering our understanding
of informal types of software development and building tools
which lower the entry barriers to computation.

Whether designing new programming languages, tools, or
educational interventions, a thorough understanding of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2010, April 10 – 15, 2010, Atlanta, Georgia, USA
Copyright 2010 ACM 978-1-60558-929-9/10/04...$10.00.

target users or learners is required. We have built consid-
erable evidence about what novice programmers do and do
not understand (see e.g., [6, 9, 17, 29, 32]), but these studies
consider students in formal learning environments. End-user
programmers often learn about scripting and programming
without the aid of a classroom, and we know little about how
they grasp conceptual computing knowledge. The increas-
ing prevalence of software created by end users [30] moti-
vates a need for the examination of their understandings. In
so doing we will be able to more appropriately design tools
and resources that scaffold their development processes.

The study presented in this paper begins to address this gap
in the literature by providing a detailed characterization of
what aspects of programming fundamentals one group of
non-traditional software developers understand and how they
go about learning. Our study is contextualized within the
domain of professional web design and development, whose
members make up a large and diverse group of end-user pro-
grammers. They regularly engage in programming activi-
ties, making use of textual markup and scripting languages
like HTML, CSS, JavaScript, and PHP. Further, in studying
practicing web developers we can explore notions of pro-
gramming among a group of people who program in their
careers but may lack a traditional educational background
in computing. In this paper we investigate the following re-
search questions:

1. What programming concepts do web developers recog-
nize, and to what degree do they understand each?

2. How do web developers think about and associate foun-
dational programming concepts with one another?

3. How do web developers go about learning new things as
they go about their work?

The remainder of this paper begins with an overview of re-
lated work, and we then detail our study design. Results are
divided into two sections. The first focuses on how partici-
pants categorized various computing concepts in a card sort-
ing task. This is followed by a discussion of themes about
learning derived from interview data. We end the paper with
a discussion of the implications of our findings.

RELATED WORK
Recently the subject of end-user programming has garnered
significant attention in the research community; see Lieber-
man et al. [20] for a thorough overview of this research.

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

703

Generally speaking, research in this area recognizes that pro-
gramming and software development are difficult tasks for
end users and therefore seeks to simplify the task of pro-
gramming in some way. Often this results in the develop-
ment of new tools or systems that target some facet of the
programming task. Recent efforts to support end-user pro-
grammers include programming by example [16, 19], natu-
ral language programming [21, 23], and scaffolding users in
testing and debugging activities [1, 34].

The work of Ko et al. [14] closely aligns with our research by
framing the challenges of end-user programming as learning
difficulties encountered while novices acquire expertise. In a
study of non-programmers enrolled in a university course for
GUI application development with Visual Basic.NET, they
identified six types of learning barriers: design, selection,
coordination, use, understanding, and information. These
barriers were derived from breakdowns in learners’ under-
standings that they could not resolve without assistance.

Ko et al.’s findings share many parallels with research on
novice programmers. Computer science educators have long
recognized that novices struggle to design algorithms [7], to
select and assemble language components [32], to manage
syntactic complexity [9], and to grasp the behavior of pro-
grams at runtime [6]. However, the approaches that educa-
tors use to support novices may not be appropriate for end
users since their knowledge is likely highly situated in their
context [10, 24]. For example, we know that mathematics
as learned and enacted in the real world differs significantly
from what is taught in classroom environments [15, 26].

Our work adopts the perspective that web developers and
other end-user programmers are often informal learners of
computing who develop their understandings in a piecemeal
fashion. We recognize that knowledge developed in this way
may differ from that of classroom learning. In this paper we
explore conceptual understandings among a group of profes-
sional web designers and describe their strategies for learn-
ing new information.

An early study by McKeithen et al. used free-recall tasks
with programming reserved words to explore how novices
and experts taken from traditional educational settings relate
concepts to one another [22]. They found that beginners of-
ten related concepts by natural language associations while
experts used programming semantics to relate concepts, with
intermediate learners using a mixture of the two. Our work
shares similar research questions and a concept-based ap-
proach, but we employ card sorting to explore conceptual
relationships held by participants who may or may not have
had exposure to formal programming education.

In an online survey Rosson et al. explored learning behav-
iors of over 300 web developers [25]. They noted that nearly
all respondents reported that at least some of their program-
ming skills were self taught, and many indicated they relied
on online resources. Participants were also more likely to
refer to FAQs, books, code from similar websites, and col-
leagues than other resources like classes or tech support. We

further characterize this class of users and provide additional
evidence for their utilization of both online and offline re-
sources.

Lastly, Brandt et al. studied how programmers use the Web
to solve problems that arise while developing code [3]. By
studying information foraging behaviors, they found that pro-
grammers relied on Web resources for just-in-time learning
of new concepts, to clarify existing knowledge, and to re-
mind themselves of minor details which were forgotten. Our
work is complementary to these findings in that it provides
additional information about how web developers seek in-
formation online and assess its relevance to the task at hand.

STUDY PROTOCOL
Our study was conducted face to face and consisted of three
separate parts. First, participants completed a survey that
gathered basic demographic information and details about
their professional background. Next, participants engaged
in a card sorting activity about various introductory com-
puter science concepts. Finally, we ended the session with
a semi-structured interview. The sorting task and interview
are discussed in more detail in the following subsections.

Card Sorting Task
Card sorting is a general purpose elicitation technique that
can be applied in a wide range of settings [27]. At its most
basic, it involves participants grouping items from a set of
stimuli (e.g., pictures, words) into categories based on sim-
ilarity along some dimension. Sorting tasks may be either
closed, where participants are provided with the sort cri-
teria and fixed categories in which to place the cards, or
open, with participants developing their own criteria and cat-
egories. Through categorizing the physical cards in multiple
ways, participants provide indications of their own mental
representation of the concepts [8].

Card sorts are often employed in HCI as a usability tool for
gaining an understanding about how users might naturally
group certain aspects of a designed artifact (e.g., placement
of content on web sites [13]). However, categorization tasks
also allow us to investigate a person’s existing knowledge
about the stimuli. Fincher and Tenenberg argue that card
sorting “can be effective in eliciting our individual, and of-
ten semi-tacit, understanding about objects in the world and
their relationships to one another” [8, p. 90]. Accordingly,
computer science education researchers have successfully
used card sorting to elicit novice programmers’ knowledge
of fundamental computing concepts with cards containing
terms about programming [17, 29].

Building on Sanders et al.’s work [29], we used card sort-
ing to explore web developers’ knowledge of introductory
computing concepts. We developed a set of 26 cards con-
taining terms from Sanders et al.’s study as well as terms
from a study by Dorn et al. [5] that explored common intro-
ductory constructs found in an online repository of scripting
code. After merging the two lists, we removed any dupli-
cated terms and eliminated terms that lacked concreteness
or relevance to the web programming domain (e.g., depen-

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

704

selection statement 8A

definition: a control structure that allows different parts of a

program to execute depending on the exact situation

if (condition)

{

…

}

else

{

…

}

Figure 1. Example Card with Definitions

dency, thread). That is, we ensured the list of terms had clear
syntactic representations in JavaScript. Our final cards con-
tained the concepts listed in Table 1, with one term per card.

The task consisted of a repeated single-criterion card sort
with both open and closed sorts. The first four sorts were
prompted by researchers; these closed sorts explicitly ex-
plored participants’ recognition and understanding of the 26
terms. The first sort is particularly notable in that it asked
participants to separate the cards based on whether they rec-
ognized the term or not. Because we sought to explore par-
ticipants’ understanding of the underlying concepts and not
simply vocabulary recognition, we had them repeat the sort
for any cards originally placed in the “don’t recognize” cat-
egory. In this extra sort, we provided cards that contained
the unfamiliar term, its definition,1 and a JavaScript exam-
ple of the concept in use (see Figure 1). Any concepts recog-
nized with the aid of this additional information were added
to the participant’s “recognize” category, and any that re-
mained unknown were eliminated from all subsequent sorts.
Following the four closed sorts, participants were invited to
openly sort the cards using one criterion at a time in as many
ways as they could generate.

Interview
Once participants had exhausted their ideas for additional
open sorts, we conducted a semi-structured interview that
lasted approximately 30 minutes. The interview elicited in-
formation about participants’ daily job responsibilities, use
of programming or scripting languages, and use of software
tools (e.g., Photoshop). We also inquired about typical strat-
egies they employ while developing scripts and resources
they rely on to learn new things about programming.

Audio recordings of the interviews were transcribed, and we
used a multi-step thematic analysis [4] to analyze the quali-
tative data. Coding was done in both a top-down and bottom-
up fashion. We coded transcripts based on particular ques-
tions asked of all participants but also allowed for emergent
codes when other themes were mentioned by multiple partic-
ipants. Additional passes were made through the transcripts
to further refine the codes. Lastly, in preparing transcript ex-
cerpts for presentation in this paper, we have edited them as
necessary for anonymity and brevity.

1Definitions were taken from the glossaries of introductory text-
books [12, 18, 36] and adapted where necessary to fit JavaScript.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 avg

Participant

W
e

e
k

ly
 T

a
s

k
 D

iv
is

io
n

Photoshop Scripting

Figure 2. Average Weekly Division of Labor

Recruitment
Participants were recruited from a large metropolitan area
via email. Solicitation messages for volunteers were sent
primarily to mailing lists for three large Meetup2 groups of
local web designers, graphic designers, and users of Adobe
Photoshop. Volunteers were then pre-screened using a short
email survey to ensure that they were actively involved in the
web design profession and had prior experience with writing
scripts or programs in JavaScript. Face to face interviews
were scheduled with participants meeting the study criterion,
and participants were compensated $15 for their time.

PARTICIPANT DEMOGRAPHICS AND BACKGROUND
In total, we interviewed 12 people—seven men and five
women. Ten participants indicated on the survey that they
actively work in the web design field, and the remaining
two were students currently enrolled in web design degree
programs at local institutions. Most participants (58%) se-
lected “Web Developer” as their job title with only two peo-
ple choosing the title “Programmer.”

Our participants were well educated. All but two partici-
pants (one of whom was a current student) held a bachelor’s
degree, and four participants either had earned or were pur-
suing a master’s degree. However only one person held a
degree in computer science. About a third of them held un-
dergraduate degrees in areas related to web or graphic design
(e.g., visual communications) with the rest holding degrees
in the humanities or other fields (e.g., English, psychology,
ministry).

We were successful in recruiting broadly from the web de-
sign/development community with respect to reaching those
with a wide range of professional experience. The num-
ber of years of experience with Photoshop ranged from 2
to 13 years, and participants reported between 2 months and
15 years of scripting or programming language experience.
On a scale of 1 (novice) to 5 (expert), the average self re-
ported level of expertise in scripting was 3.21 (σ = 1.16).
Every participant listed exposure to more than one script-
2http://www.meetup.com/

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

705

http://www.meetup.com/

ing or programming language with JavaScript, ActionScript,
and PHP being those most frequently mentioned. Figure 2 il-
lustrates participants’ estimated weekly division of labor be-
tween scripting and graphics manipulation in Photoshop. On
average, our participants’ time was split roughly evenly be-
tween these two tasks; however most people tended to con-
centrate more heavily on one or the other.

When elaborating on the nature of their work, most partic-
ipants noted being involved in front-end web development
or design. This job often requires them to build functional
web sites from prototypes that have been mocked up with
tools like Photoshop that either they or someone else de-
signed. They make decisions about how to slice up visual
components in the layout so that they render properly across
different browsers, and they write scripts using languages
like JavaScript or PHP to enable the intended interactivity
features in the design.

CLOSED SORT RESULTS
As mentioned earlier, we asked participants to first sort the
26 programming concepts into two piles based on whether or
not they recognized the term. The results of this initial sort
are presented in Table 1 with concepts ordered by their level
of recognition. Despite the lack of what might be considered
a traditional computing education, a majority of participants
recognized nearly all concepts, and ten of the concepts were
universally recognized based on the term alone. The least
frequently recognized terms were selection statement, nest-
ing control structures, and functional decomposition, with
the last being markedly less familiar than all others.

Once provided with cards containing definitions and exam-
ples of the concepts, the rate of recognition increased signif-
icantly (paired t-test; t(25) = −3.696, p = 0.001). Over
half of the concepts were then familiar to everyone, and the
minimum recognition rate increased to 83.3% with this ad-
ditional information. Many participants commented on the
fact that they did use these concepts often, but they had not
initially recognized the terms simply because they had never
learned the names. For example:

P6: Mathematical operator, goodness gracious. [laugh-
ter] I’ve just never heard it called that before. Plus, mi-
nus, sure.
P9: Um, some of them I picked up by seeing the code.
I just didn’t know the name of it, like nesting con-
trol structures. You know, putting if statements and
when statements inside each other is common practice
in code, but I just had never given it a name.

Additional Closed Sorts
After participants identified the subset of concepts they rec-
ognized, we prompted them with three additional sorts. Par-
ticipants sorted the concepts based on their own level of un-
derstanding of the concept, based on how often they use the
concepts in scripts, and based on how difficult they perceive
the concepts are to learn. These closed sorts were intended to
provide additional information about conceptual understand-
ing beyond concept recognition. Results of these sorts are

Table 1. Percentage of Participants Recognizing Card Concepts
CS Concept Term Only With Def’n

assignment 100.0%
input 100.0%
object 100.0%

function 100.0%
parameters 100.0%

array 100.0%
string 100.0%
output 100.0%
number 100.0%
variable 100.0%

mathematical operator 91.7% 100.0%
definite loop 83.3% 100.0%

importing code 83.3% 100.0%
indefinite loop 83.3% 100.0%

boolean 83.3% 91.7%
constant 83.3% 91.7%

exception handling 83.3% 83.3%
type conversion 75.0% 91.7%
exporting code 75.0% 83.3%
logical operator 75.0% 83.3%

relational operator 66.7% 91.7%
variable scope 66.7% 91.7%

recursion 66.7% 83.3%
selection statement 58.3% 91.7%

nesting control structures 58.3% 83.3%
functional decomposition 8.3% 83.3%

summarized in Tables 2, 3, and 4, respectively. In each table,
concepts are sorted by a “rating” value which is computed
as a weighted average of the response frequency across the
ordered categories. For example, in Table 2 categories are
assigned values between one and four (similar to a Likert-
type scale) and the rating corresponds to the average value
that participants assigned to this concept. Further, each of
these tables divide the upper, middle, and bottom thirds of
the rating values with a double line.

Based on their sorting results, participants reported consid-
erable understanding of and comfort with these concepts.
Table 2 shows the rating value for each concept as well as
a breakdown of participants’ self-assessed level of under-
standing using the categories: I have heard the term but am
not comfortable using it in my scripts (1); I understand the
meaning of the term but have problems using it correctly in
my scripts (2); I understand the meaning of the term and am
comfortable using it in my scripts (3); and I have a strong
understanding of the term and feel I could explain it to some-
one else (4). With the exception of recursion, every concept
had a rating of 3 or higher, meaning that participants un-
derstood the term’s meaning and were comfortable using it.
The top two-thirds of topics rated 3.58 or higher, indicat-
ing a high degree of knowledge and an ability to explain the
concepts to others. Among the lowest ranked terms were
variable scope, type conversion, indefinite looping, excep-
tion handling, functional decomposition, and recursion. In-
terestingly, concepts where individual participants indicated

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

706

Table 2. Personal Level of Understanding; Sorted by Decreasing Un-
derstanding

CS Concept Rating
(1–4)

1 2 3 4

number 3.92 8.3% 91.7%
boolean 3.91 9.1% 90.9%
variable 3.83 16.7% 83.3%

mathematical
operator

3.75 8.3% 8.3% 83.3%

function 3.75 8.3% 8.3% 83.3%
array 3.75 8.3% 8.3% 83.3%
object 3.75 25.0% 75.0%

selection
statement

3.73 9.1% 90.9%

nesting control
structures

3.70 30.0% 70.0%

string 3.67 8.3% 16.7% 75.0%
parameters 3.67 8.3% 16.7% 75.0%

input 3.67 8.3% 16.7% 75.0%
definite loop 3.67 33.3% 66.7%

relational
operator

3.64 9.1% 9.1% 81.8%

constant 3.64 18.2% 81.8%
output 3.58 16.7% 8.3% 75.0%

importing code 3.58 16.7% 8.3% 75.0%

logical operator 3.50 10.0% 20.0% 70.0%
assignment 3.50 8.3% 25.0% 66.7%

exporting code 3.50 10.0% 30.0% 60.0%
variable scope 3.45 9.1% 9.1% 9.1% 72.7%

type conversion 3.45 9.1% 27.3% 63.6%
indefinite loop 3.42 16.7% 25.0% 58.3%

exception
handling

3.40 10.0% 10.0% 10.0% 70.0%

functional
decomposition

3.40 60.0% 40.0%

recursion 2.90 20.0% 20.0% 10.0% 50.0%

Table 3. Frequency of Use; Sorted
by Decreasing Frequency

CS Concept Rating
(1–4)

number 3.92
string 3.92

relational
operator

3.91

selection
statement

3.91

boolean 3.91
logical operator 3.90

variable 3.83
mathematical

operator
3.83

array 3.75
object 3.75

definite loop 3.75
parameters 3.73

nesting control
structures

3.70

assignment 3.67
input 3.67

output 3.67
function 3.67

importing code 3.45
functional

decomposition
3.40

variable scope 3.36
constant 3.18

exporting code 3.10
exception
handling

3.10

type conversion 3.09
indefinite loop 3.08

recursion 2.70

Table 4. Difficulty to Learn;
Sorted by Increasing Difficulty

CS Concept Rating
(1–3)

number 1.08
boolean 1.09

relational
operator

1.09

variable 1.17
constant 1.18

logical operator 1.20
string 1.25

mathematical
operator

1.33

input 1.33

assignment 1.42
parameters 1.50
selection
statement

1.55

output 1.58
importing code 1.67

function 1.75
type conversion 1.82
nesting control

structures
1.90

array 1.92

exporting code 2.00
object 2.00

definite loop 2.08
indefinite loop 2.08
variable scope 2.09

recursion 2.20
functional

decomposition
2.30

exception
handling

2.50

trouble were spread throughout the table and were not local-
ized to the bottom third, where one might expect.

We also asked participants to sort the cards into four cate-
gories depending on how frequently the concepts were used
in code that they wrote. The four categories provided were
Never (1), Rarely (2), Occasionally (3), and Frequently (4).
Table 3 presents the results of this sort, ordered by decreas-
ing frequency of use. Unlike the sort on understanding, the
distribution of responses was fairly uniform across the three
tiers—no concept in the top two thirds was placed in the
“never” category, and the six lowest ranking terms were all
categorized as frequently used by 50% or fewer of the par-
ticipants. In other words, these results indicate a reasonably
strong consensus about how frequently these programming
concepts arise in typical web development work. The top-
ics listed in the top third (number to mathematical operator)
are frequently used, and those in the bottom third (importing
code to recursion) are used sporadically.

The final closed sort requested of participants was to cate-
gorize their perception of how difficult the concepts are to

learn to use correctly. They were prompted with three cate-
gories for this sort: Easy (1), Intermediate (2), and Advanced
(3). Responses on this sort are outlined in Table 4 and are
sorted by increasing level of difficulty. This sort exhibited
the lowest agreement with 73% of the individual concepts
being ranked in all three categories (easy, intermediate, and
advanced) by different people. Despite this variation, the
final ordering of concepts maps relatively closely to what
one might find in an introductory textbook table of contents:
basic data types and operators; followed by selection state-
ments and functions; followed by looping, recursion, and
exceptions.

Comparison of Closed Sorts
Comparing the results from Tables 2–4, we observed that
many concepts appeared to be similarly rated in each of
the three sorts. Indeed, a Pearson correlation analysis re-
vealed a statistically significant positive correlation between
the ratings for level of understanding and frequency of use
(r = 0.808, N = 26, p < 0.001). We also noted sta-
tistically significant negative correlations between ratings
for frequency of use and learning difficulty (r = −0.641,

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

707

N = 26, p < 0.001) and between difficulty and understand-
ing (r = −0.586, N = 26, p = 0.002).

Further we compared the terms with respect to their rela-
tive grouping in the tiers of the three sorts. This provided
an indication for the concepts that were uniformly ranked
in terms of the participants’ level of understanding, the fre-
quency with which they are used, and the perceived con-
ceptual difficulty. We noted four terms that consistently ap-
peared in the first tier, two in the second, and six in the
bottom tier. The concepts that were rated the most highly
understood, most frequently used, and easiest to learn were
number, boolean, variable, and mathematical operator. In-
versely, those which ranked least understood, least used, and
most difficult were exporting code, indefinite loop, variable
scope, recursion, functional decomposition, and exception
handling. The concepts parameters and output were consis-
tently in the middle tier.

OPEN SORTING
Once participants had completed the final closed sort, we
provided them with the opportunity to sort the cards into
groups using criteria of their own choosing. Through open
sorting, we aimed to gather additional insight about web
developers’ knowledge of these 26 concepts and their as-
sociations between concepts. Participants were encouraged
to generate as many sorts as they could and researchers
recorded the participant’s sort criterion, category names, and
placement of the cards within the groups. Altogether, our
participants generated 28 sorts. With an average of 2.3 sorts
per participant, they generated noticeably fewer sorts than
introductory computing students or educators engaged in a
similar task (4.5 and 5.2, respectively) [29]. However, given
that our participants completed a number of closed sorts
prior to open sorting, this value may be artificially low. We
also noted that our participants used fewer categories per sort
on average (2.6) than the students (4.0) or educators (3.7).

To further explore the data gathered from the open sort ac-
tivity we employed superordinate analysis to classify similar
sorts into thematic groups [28]. These groups bring together
sorts that relate to a common theme, regardless of differ-
ences in the wording that participants used to describe them.
The purpose of such an analysis is to determine common-
alities in sorts across the participants, indicating the typical
ways people think about this particular set of stimuli.

Two independent raters grouped the 28 sorts into mutually
exclusive categories based on the similarity of their criterion.
To aid in making decisions about whether two sorts were
similar, raters had access to the criteria and category names
given for a sort by the participant as well as the excerpt of the
interview transcript relevant to each open sort. Transcripts
enabled raters to make an informed decision about a sort’s
meaning, particularly in the case where participants had dif-
ficulty in succinctly naming their sort criterion but were able
to talk generally about what they were trying to accomplish
with the sort. Raters achieved 79% agreement on the the-
matic grouping of the 28 sorts on their first pass. They then
collaboratively negotiated the group definitions relevant to

the six sorts where there was initial disagreement. In the
end, seven thematic groups which each contained more than
one sort were derived. These themes were (the number of
sorts related to each theme appear in parenthesis):

Conceptual Ordering (4) Sorts which classify concepts by
the order in which they should be learned or the order in
which concepts build on one another.

Quality Metrics (4) Sorts which separate concepts by vari-
ous software quality metrics like readability, maintainabil-
ity, and efficiency.

Terminology (3) Sorts which classify cards by terminology
considerations. For example, a sort whose categories are
labeled “terms you need to know to communicate with
others” and “terms that are academic.”

Language Decomposition (3) Sorts which attempt to sepa-
rate concepts into functional groups based on their seman-
tics (e.g., “related to functions” or “related to numbers”).

Expertise of Others (3) Sorts expressing beliefs about the
expertise or understanding of others.

Relevance to Scripting (2) Sorts that distinguish concepts
based on whether they are generally applicable to the typ-
ical code or scripts that web developers write.

Desire to Know More (2) Sorts that prioritize concepts by
an interest in learning more about them.

The results of the card sorting task provide a detailed picture
about what computing concepts web developers understand
and how they relate the concepts to one another, but they
provide little information about how professional web de-
velopers learn as they go about their work. For this, we must
turn to the qualitative data presented in the next section.

LEARNING AND RESOURCES
The primary focus of our semi-structured interview with par-
ticipants was to elicit their strategies for learning new infor-
mation. Our analysis of interview transcripts resulted in four
themes related to learning: motivation to learn new things,
learning processes, resources used for learning, and heuris-
tics for judging information quality. Each of these themes is
discussed in the following subsections.

Impetus for Learning
While some participants indicated that they enjoyed learn-
ing new languages or details about scripting for curiosity’s
sake, most expressed that their decision to learn something
was a matter of necessity. The computing concepts that they
chose to learn needed to contribute in some way to the com-
pletion of their current project (in a similar fashion to Black-
well’s attention investment model [2]). Incorporation of new
web features like login-based access or embedded streaming
video (and learning the necessary underlying programming
skills) were driven by project needs. Learning of new fea-
tures was also motivated by a need to remain up-to-date in
order to write standards-compliant code. Participants two
and five discuss their reasons for learning new things below.

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

708

P2: I don’t care where technology is going. It’s like,
does my check get cashed on Friday? Ok. And if they
have a new something that comes out that will impede
my check being cashed on Friday, then I will learn it.

P5: Like when CSS was officially considered a stan-
dard, and I went, oh crap, now I have to learn it.

Even among those who discussed learning new languages
or language features for fun, they often did so by choosing
to use the unfamiliar concepts in an upcoming project. In
these cases the participants were willing to tolerate some in-
efficiency in completing the project because they recognized
they were learning something new.

Learning Processes
Participant nine succinctly conveys his learning process, and
that expressed by most participants, by stating, “generally,
the best way I learn is to just jump in headfirst.” Several
participants used the phrase “trial-and-error” to characterize
their script development. When asked to elaborate they de-
scribed a process akin to bricolage programming [33], iter-
atively writing code, examining the results, and seeking out
information as necessary. In this way, our participants exem-
plified the opportunistic approach to programming described
by Brandt et al. [3]. One participant explains:

P1: I start off actually trying to do something that I need
to complete as my first step even not knowing anything
about it. And I guess the first thing that I’ll do is I’ll
Google the subject and see what I can pull out on the
Web. What information I can get out of it. And then I
just hit the floor running, or at least I try. And then of
course I come to points where I stumble, and I can’t go
forward cause it’s too complex there’s just some stuff
that I don’t know. So at that point I have a couple of
choices.

He goes on to describe his decision making process for what
to do when web resources aren’t enough—whether to con-
sult with a colleague for help or search for a book.

However, while going to the Web to look for an answer was
almost universally the first line of defense, it may not always
be the most fruitful activity. One participant realized that
this strategy was suboptimal while reflecting on the sources
of information she used and which were the most useful in
answering her questions.

P2: The Internet, of course you can Google anything,
that’s my number one place. And it’s fairly useful.
Wow, that’s a good question. The order in which I tap
my resources are from least useful to most useful. So
my colleagues are my second level, cause you know,
different companies you work at have different systems.
So something might work good in practice or I might
find it on Google, but it just doesn’t work well with
servers and the software we use. So it would be Inter-
net, colleagues, books as far as the order that I tap my
resources. The most useful would be books, colleagues,
Internet.

Table 5. Resources for Learning
Online Offline

• code samples or example demos
• walkthroughs and tutorials (e.g.,
www.w3schools.com, www.
smashingmagazine.com)

• language or library references
(e.g., www.ruby-doc.org)

• subscription-based online
training sites (e.g.,
www.lynda.com)

• forums or user groups
• blogs, both as authors and as

readers
• podcasts

• books
• code samples
• tutorials or other help files

provided with software
• manuals
• colleagues, friends, or

instructors
• strangers with similar job

descriptions (e.g., other
webmasters)

• classes

Resources Used
Over the course of the interviews, participants mentioned re-
lying on over a dozen different resources for learning some-
thing new. In addition to generic occurrences of “the Inter-
net” or “Google”, seven different online resources were dis-
cussed by different participants. We also noted seven offline
resources. Table 5 summarizes these 14 unique sources.

To provide greater detail about these web developers’ use of
resources, we included an extra question at the end of the de-
mographic survey. Participants rated how likely they would
be to consult various resources when attempting something
new on a scale of 1 (very unlikely) to 5 (very likely).
Based on Rosson et al.’s [25] prompt, we inquired about
interactive wizards, example code, classes/seminars, books,
FAQs/tutorials/online documentation, friend/coworker, and
technical support. Figure 3 depicts the percentage of partici-
pants rating each resource as likely or very likely to consult.
Similar to Rosson et al.’s findings, our participants indicated
a strong preference for online documentation, books, exam-
ples, and personal communication.

Interestingly, participants offered differing opinions with re-
spect to the use of books. Some participants utilized books
as a means to build a solid foundational understanding prior
to using less formal references found on the Web. Others
portrayed buying a book as an indication of a desire for
deeper knowledge or a long term commitment to a particular
concept. For example, P6 says he purchases a book when,
“like I really wanna master it.”

Judging Relevance
The final theme related to learning deals with how web de-
velopers judge the quality and relevance of content they find
online. The breadth of web content can be a double-edged
sword; on the one hand, chances are good that an answer
to one’s question exists online, but on the other hand, locat-
ing that information can be time consuming. One participant
reflects on her ability to find relevant information:

P11: I’m starting to learn where those online resources
are, but early on here it’s been kinda daunting to figure

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

709

www.w3schools.com
www.smashingmagazine.com
www.smashingmagazine.com
www.ruby-doc.org
www.lynda.com

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

FAQ
/D

oc

Boo
ks

Exa
m

pl
es

Frie
nd

/C
ow

or
ke

r

C
la
ss

es

W
iz
ar

ds

Tec
h

Sup
po

rt

Figure 3. Percent of Participants Rating Resource as Likely or Very
Likely to Use

out. I’ve done a lot of online that just takes me nowhere.
It’s, you know, spend an hour just clicking around try-
ing to figure out where to find the answer at.

Though some participants were unable to articulate specific
strategies they use to evalute information, relying on their
“gut reaction”, many outlined informal heuristics that they
employ while searching the Web. We noted 10 such rules of
thumb in the interview corpus, ranging from some that are
rather specific to others which could be highly subjective:

1. Legitimacy of sources, with a preference for content host-
ed by established or official publishers

2. Author credentials, preferring people recognized within
the web development community

3. Google’s page rank algorithm as a predictor of utility
4. Conformity of provided code to W3C standards
5. Availability of working code demos
6. Similarity of language features used in code examples to

those used in the participant’s code
7. Positive and negative comments of others posted in reply

to tutorial, blog, or forum entries
8. Opinion of peers about a particular source of information
9. “Digestibility” of the information, with a preference for

more easily consumable things
10. Overall aesthetic feel of the hosting web site

If not always sophisticated, these heuristics provide evidence
that web developers do develop meta-cognitive strategies for
evaluating information. They also have ramifications for
how educational content might be delivered to end-user pro-
grammers via the Web. In the next section we discuss this
and other implications of our findings.

DISCUSSION
The discussion here first considers our results relative to the
three research questions posed. We then draw out four im-
plications for the research community. The first two are tied
closely to our plans for future work, while the final two have
broad applicability to end-user programming research.

What programming concepts do web developers recognize,
and to what degree do they understand each? On the whole,
the participants recognized nearly all of the concepts with
the aid of a definition and example. The terms used in our
study were standard terminology from introductory materi-
als, and several participants lacked knowledge of the formal
names for these concepts. Thus, our results suggest the im-
portance of multiple indexes in reference materials which
target informal learners. We also found that participants
expressed remarkably normative judgements about concept
difficulty; in many ways the average ratings matched what
we might expect from a computer scientist.

How do web developers think about and associate founda-
tional programming concepts with one another? The open
sorting data provides some insight into how web developers’
associations may differ from other populations. When com-
pared to Sanders et al.’s card sort study with novice computer
science students [29], our web developers generated fewer
sorts per person with fewer categories per sort. This suggests
that introductory CS students may have a more sophisticated
understanding of these concepts than our web developers.
The common open sort criteria noted in this study also sup-
port this interpretation. While not necessarily organized by
natural language groupings (as previously used by novices
[22]), only one of the seven sort themes we identified in-
volved grouping cards based on programming language se-
mantics. Contrastingly, the most frequently occurring cat-
egory groupings generated by introductory CS students all
appear to make use of programming syntax or semantic con-
cerns [29]. At the very least, these results indicate that prac-
ticing web developers think about these concepts in different
ways than do traditional students and teachers.

How do web developers go about learning new things as they
go about their work? We found that learning in this context
is often motivated by project demands, whether that be a
need to learn a specific new technique or to update one’s skill
set to continue to write standards-compliant code. Partici-
pants expressed a trial and error approach to programming
where writing code is interleaved with information forag-
ing. We found that participants learned from a wide variety
of online and offline resources, with a preference for FAQ-
style documentation, books, and related code examples. An
ongoing challenge suggested by our results lies in helping
web developers acquire useful strategies for assessing the
relevance and quality of material found online.

Highlight Relevance of Uncommon Concepts
Our data exhibited a strong correlation between frequency
of use and concept difficulty. Further we noted that our web
developers choose to learn concepts they perceive to be di-
rectly related to their tasks. Taken together they seem to
suggest that web developers are learning those concepts that
are either the easiest or the most useful. While perhaps not
surprising, web developers and other end-user programmers
may be missing out on more advanced concepts that could be
quite useful but are not entirely obvious to them. For exam-
ple, concepts like indefinite loop, exception handling, and
program decomposition were uniformly ranked at the bot-

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

710

tom of the sorts, but use of these constructs could easily aid
these programmers in developing more robust, reusable soft-
ware. Additionally, as the Web continues to permeate daily
life, web designers may naturally seek to develop content for
new platforms (e.g., iPhone applications), and doing so re-
quires considerable knowledge about computer science con-
tent well beyond the scope of the concepts considered here.
As a research community we need to continue identifying
relevant conceptual content for non-traditional programmer
populations to inform the design of new resources and tools.

Design Resources to Support Informal Learning
After identifying the uncommon, difficult conceptual infor-
mation, we should explore innovative ways to reach infor-
mally trained programmers with instructional content while
respecting their current work practices. Our results further
confirm a reliance on resources like tutorials and example
code, often found through web searches. These practices
closely match the affordances of case-based learning aids
which use collections of example projects as a vehicle to
provide conceptual instruction [11]. Our future work will
explore the use of contextualized case-based resources for
supporting informal learning among web designers.

Study Practicing Developers
We must also pay careful attention to the learning and in-
formation consumption strategies of practicing developers
as we design resources. Often, studies of non-traditional
developers or end-user programmers utilize university stu-
dents as proxies for practitioners for pragmatic reasons (e.g.,
accounting students in the place of professional accoun-
tants, non-majors enrolled in elective programming classes).
Though such studies provide valuable insights about those
who lack traditional backgrounds in computing, they should
also be complemented by research conducted in the field.
The heuristics for evaluating information outlined here stem
from years of learning embedded in the work environment,
and that experience also plays a role in the construction
of knowledge. For example, while participants’ combined
ratings of concepts resembled normative views, these web
developers seemed to relate these concepts to one another
along dimensions different from computing students.

Use Learning as a Research Lens
Lastly, taking a learner-centered view of the challenges in-
formally trained programmers face, as we have taken in our
work, opens new research avenues [31]. It challenges us to
consider pedagogical approaches to addressing these chal-
lenges, rather than solely technological ones. As with the
study of practitioners, using learning as an additional lens
for our research permits a more holistic depiction of the rich
domain of end-user programming. There are many unique
opportunities in this space for collaboration between HCI,
computing education, and software engineering researchers.

CONCLUSION
In this paper we have presented the results of a study of 12
web developers. Through our analysis of card sorting data
we contributed the first detailed depiction of this group of
non-traditional programmers’ understanding of foundational

programming concepts. Our qualitative results provided ad-
ditional evidence in support of models of opportunistic pro-
gramming, and we further elaborated on the common re-
sources web developers seek out in order to learn something
new. Lastly, we have distilled four implications for future
research in end-user programming.

Millions of users are developing informal notions of compu-
tation through their daily experiences with the Web and com-
puters more generally. By focusing on these users’ behaviors
as acts of learning, we can better understand what they know,
how they learn, and how we can help them achieve a more
thorough understanding. Doing so also allows us to build
towards a future of true universal computational literacy.

ACKNOWLEDGMENTS
We sincerely thank our study participants for volunteering
their time. This material is based upon work supported by
the National Science Foundation under Grant Nos. 0613738
and 0618674. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

REFERENCES
1. L. Beckwith, C. Kissinger, M. Burnett, S. Wiedenbeck,

J. Lawrance, A. Blackwell, and C. Cook. Tinkering and
gender in end-user programmers’ debugging. In
Proceedings of CHI ’06, pages 231–240, 2006.

2. A. F. Blackwell. First steps in programming: a rationale
for attention investment models. In Proceedings of
HCC ’02, pages 2–10, 2002.

3. J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and
S. R. Klemmer. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. In Proceedings of CHI ’09, pages
1589–1598, 2009.

4. V. Braun and V. Clarke. Using thematic analysis in
psychology. Qualitative Research in Pyschology,
3(2):77–101, 2006.

5. B. Dorn, A. E. Tew, and M. Guzdial. Introductory
computing construct use in an end-user programming
community. In Proceedings of VL/HCC ’07, pages
27–30, 2007.

6. B. Du Boulay. Some difficulties of learning to program.
In E. Soloway and J. Spohrer, editors, Studying the
Novice Programmer, pages 283–299. LEA, Hillsdale,
NJ, 1989.

7. M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. The TeachScheme! project:
Computing and programming for every student.
Computer Science Education, 14(1):55–77, 2004.

8. S. Fincher and J. Tenenberg. Making sense of card
sorting data. Expert Systems, 22(3):89–93, 2005.

9. T. R. G. Green and S. J. Payne. Organization and
learnability in computer languages. International
Journal of Man-Machine Studies, 21:7–18, 1984.

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

711

10. J. G. Greeno, A. M. Collins, and L. B. Resnick.
Cognition and learning. In D. C. Berliner and R. C.
Calfee, editors, Handbook of educational psychology,
pages 15–46. Simon and Schuster Macmillan, New
York, NY, 1996.

11. M. Guzdial and C. Kehoe. Apprenticeship-based
learning environments: A principled approach to
providing software-realized scaffolding through
hypermedia. Journal of Interactive Learning Research,
9(3/4):289–336, 1998.

12. C. Horstmann. Big Java. John Wiley and Sons,
Hoboken, NJ, 2nd edition, 2006.

13. C. Katsanos, N. Tselios, and N. Avouris.
Autocardsorter: designing the information architecture
of a web site using latent semantic analysis. In
Proceedings of CHI ’08, pages 875–878, 2008.

14. A. J. Ko, B. A. Myers, and H. H. Aung. Six learning
barriers in end-user programming systems. In
Proceedings of VL/HCC ’04, pages 199–206, 2004.

15. J. Lave, M. Murtaugh, and O. de la Rocha. The
dialectic of arithmetic in grocery shopping. In
B. Rogoff and J. Lave, editors, Everyday Cognition,
pages 67–94. Harvard University Press, Cambridge,
MA, 1984.

16. G. Leshed, E. M. Haber, T. Matthews, and T. Lau.
Coscripter: automating & sharing how-to knowledge in
the enterprise. In Proceedings of CHI ’08, pages
1719–1728, 2008.

17. G. Lewandowski, A. Gutschow, R. McCartney,
K. Sanders, and D. Shinners-Kennedy. What novice
programmers don’t know. In Proceedings of ICER ’05,
pages 1–12, 2005.

18. J. Lewis and W. Loftus. Java Software Solutions (Java
5.0 version): Foundations of Program Design. Addison
Wesley, Boston, MA, 4th edition, 2005.

19. H. Lieberman, editor. Your Wish is My Command:
Programming by Example. Morgan Kaufmann, San
Francisco, CA, 2001.

20. H. Lieberman, F. Paternó, and V. Wulf, editors. End
User Development. Springer, 2006.

21. G. Little and R. C. Miller. Translating keyword
commands into executable code. In Proceedings of
UIST ’06, pages 135–144, 2006.

22. K. B. McKeithen, J. S. Reitman, H. H. Rueter, and
S. C. Hirtle. Knowledge organization and skill
differences in computer programmers. Cognitive
Psychology, 13:307–325, 1981.

23. J. F. Pane, C. Ratanamahatana, and B. A. Myers.
Studying the language and structure in
non-programmers’ solutions to programming problems.
International Journal of Human-Computer Studies,
54:237–264, 2001.

24. B. Rogoff and J. Lave, editors. Everyday Cognition.
toExcel, New York, NY, 1999.

25. M. B. Rosson, J. Ballin, and J. Rode. Who, what, and
how: A survey of informal and professional web
developers. In Proceedings of VL/HCC ’05, pages
199–206, 2005.

26. W.-M. Roth. Mathematical inscriptions and the
reflexive elaboration of understanding: An ethnography
of graphing and numeracy in a fish hatchery.
Mathematical Thinking and Learning, 7(2):75–110,
2005.

27. G. Rugg and P. McGeorge. The sorting techniques: a
tutorial paper on card sorts, picture sorts and item sorts.
Expert Systems, 14(2):80–93, 1997.

28. G. Rugg and M. Petre. A gentle guide to research
methods. Open University Press, Berkshire, UK, 2007.

29. K. Sanders, S. Fincher, D. Bouvier, G. Lewandowski,
B. Morrison, L. Murphy, M. Petre, B. Richards,
J. Tenenberg, L. Thomas, R. Anderson, R. Anderson,
S. Fitzgerald, A. Gutschow, S. Haller, R. Lister,
R. McCauley, J. McTaggart, C. Prasad, T. Scott,
D. Shinners-Kennedy, S. Westbrook, and C. Zander. A
multi-institutional, multinational study of programming
concepts using card sort data. Expert Systems,
22(3):121–128, 2005.

30. C. Scaffidi, M. Shaw, and B. Myers. Estimating the
numbers of end users and end user programmers. In
Proceedings of VL/HCC ’05, pages 207–214, 2005.

31. E. Soloway, M. Guzdial, and K. E. Hay.
Learner-centered design: The challenge for HCI in the
21st century. Interactions, 1(2):36–48, April 1994.

32. J. Spohrer and E. Soloway. Putting it all together is
hard for novice programmers. In Proceedings of the
IEEE International Conference on Systems, Man, and
Cybernetics, November 1985.

33. S. Turkle and S. Papert. Epistemological pluralism and
the revaluation of the concrete. In I. Harel and
S. Papert, editors, Constructionism: Research reports
and essays, 1985-1990, pages 161–192. Ablex,
Norwood, N.J., 1991.

34. A. Wilson, M. Burnett, L. Beckwith, O. Granatir,
L. Casburn, C. Cook, M. Durham, and G. Rothermel.
Harnessing curiosity to increase correctness in end-user
programming. In Proceedings of CHI ’03, pages
305–312, 2003.

35. J. M. Wing. Computational thinking. Communications
of the ACM, 49(3):33–35, 2006.

36. J. M. Zelle. Python Programming: An Introduction to
Computer Science. Franklin Beedle, Wilsonville, OR,
2004.

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

712

	Introduction
	Related Work
	Study Protocol
	Card Sorting Task
	Interview
	Recruitment

	Participant Demographics and Background
	Closed Sort Results
	Additional Closed Sorts
	Comparison of Closed Sorts

	Open Sorting
	Learning and Resources
	Impetus for Learning
	Learning Processes
	Resources Used
	Judging Relevance

	Discussion
	Highlight Relevance of Uncommon Concepts
	Design Resources to Support Informal Learning
	Study Practicing Developers
	Use Learning as a Research Lens

	Conclusion
	Acknowledgments
	REFERENCES

