
A Strategy-Centric Approach to the
Design of End-User Debugging Tools

Valentina I. Grigoreanu
1,2

1
Microsoft Corporation

Redmond, WA

valeng@microsoft.com

Margaret M. Burnett
2

2
Oregon State University

Corvallis, OR

burnett@eecs.orst.edu

George G. Robertson
3

3
Microsoft Research

Northeast Harbor, ME

ggr@microsoft.com

ABSTRACT

End-user programmers‟ code is notoriously buggy. This

problem is amplified by the increasing complexity of end

users‟ programs. To help end users catch errors early and

reliably, we employ a novel approach for the design of end-

user debugging tools: a focus on supporting end users‟ ef-

fective debugging strategies. This paper makes two contri-

butions. We first demonstrate the potential of a strategy-

centric approach to tool design by presenting StratCel, an

add-in for Excel. Second, we show the benefits of this de-

sign approach: participants using StratCel found twice as

many bugs as participants using standard Excel, they fixed

four times as many bugs, and all this in only a small frac-

tion of the time. Other contributions included: a boost in

novices‟ debugging performance near experienced partici-

pants‟ improved levels, validated design guidelines, a dis-

cussion of the generalizability of this approach, and several

opportunities for future research.

Author Keywords

Debugging strategies, debugging tools, end-user software

engineering, tool design.

ACM Classification Keywords

D.2.5. Software Engineering – Testing and Debugging;

H.5.m. Information Interfaces and Presentations: Misc.

General Terms

Human Factors, Design.

INTRODUCTION AND RELATED WORK

End-user programmers are people who program, not as an

end in itself, but as a means to more quickly accomplish

their tasks or hobbies [18]. For example, an accountant

creating a budget spreadsheet would fit this description.

Many studies have found end-user programmers‟ code to be

rife with errors (e.g., [19]) and the negative consequences

of these errors have been reflected in numerous news sto-

ries, many of which are recounted at the EuSpRIG site [8].

One recent example that received media attention came

following Lehman Brothers‟ collapse. Barclays Capital

agreed to purchase some of Lehman‟s assets but, due to a

spreadsheet error resulting from hidden dependencies, the

company purchased assets for millions of dollars more than

they had intended [13]. A few weeks later, Barclays filed a

motion in court asking for relief due to the mistake.

The impact of end-user programming errors like the exam-

ple above is amplified by quickly increasing complexity of

end-user programs and by the large number of end-user

programmers. The complexity of corporations‟ spreadsheets

doubles in size and formula content every three years [31].

In addition, there are tens of millions more end-user pro-

grammers than professional programmers [24].

In response to this problem, end-user software engineering

research has begun to emerge in many areas. They include

teaching kids to create programs (e.g., [6, 16]), program-

ming for and over the web (e.g., [15, 23]), and even pro-

gramming household appliances [22].

Of particular relevance are research spreadsheet debugging

tools. The hidden structure of spreadsheets is an end-user

debugging pain point [17] and tools such as Davis‟ overlaid

arrows [7], Shiozawa et al.‟s dependencies in 3D [26], and

Igarashi et al.‟s animated dataflow visualizations [14] have

sought to address it. Tools which visualize broken areas

(e.g., [25]) also aim to highlight the spreadsheet structure.

Some debugging tools improve the automatic detection of

errors (e.g., Abraham and Erwig‟s UCheck system [1]).

Others empower users to systematically test their spread-

sheets (e.g., Burnett et al.‟s WYSIWYT testing methodolo-

gy [5]).

However, a critical stone has been left unturned in the de-

sign of spreadsheet debugging tools: how tools can directly

support end-user programmers‟ existing debugging strate-

gies (users‟ plans of action for accomplishing a task).

Building upon a recent comprehensive overview of Excel

users‟ debugging strategies [12], this approach led to the

following contributions:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

713

 A novel empirically-based end-user debugging tool,

StratCel, created to support end-user programmers‟ spe-

cific debugging strategy needs. Participants expressed

positive comments about StratCel‟s usability and appli-

cability to their personal projects.

 A positive impact on end-user debugging success: (1)

twice as many bugs found by participants using StratCel

compared to Excel alone, (2) four times as many bugs

fixed, (3) in a fraction of the time, (4) including two bugs

which both the researchers and Control group had over-

looked, and (5) a closing gap in success based on indi-

vidual differences.

 Design guidelines, resulting from our validated empiri-

cally-based implications for design.

Lastly, we argue for the generalizability of this approach

and list several opportunities for future research.

STRATCEL’S EMPIRICALLY-BASED DESIGN

In this section, we address the question of whether a strate-

gy-centric approach in the design of end-user debugging

tools is practical and, if so, how it can be achieved. We then

report our experience building StratCel: an add-in for Mi-

crosoft Excel.

In the first subsection, we provide a quick overview of the

iterative approach and methods we employed in StratCel‟s

design. In the latter subsections, we then list several candi-

date design guidelines from a study of Excel users‟ debug-

ging strategies [12]. We also detail how we employed these

candidate guidelines in our design of StratCel to see which

would prove effective: we later evaluate these.

In this section, all candidate design implications come from

that earlier study, and are formatted as follows:

Candidate 0: This is an example implication from [12].

The earlier study revealed that different levels of strategy

[2] lead to different types of implications for design [12].

The upcoming subsections reflect the following three levels

of implications for design: (1) a strategy is the user‟s ap-

proach for the entire task. Implications for design based on

strategies are therefore high-level and may act as a check.

(2) One or more stratagems can be used in combination to

achieve a strategy. Stratagems are the happy medium and

are therefore a great level for sparking innovation: low-

level enough to be concrete, yet high-level enough to design

a new feature. Stratagems are in turn made up of (3) clus-

ters of tactics, or low-level moves (feature usage) with a

purpose. Examining moves and tactics reveals low-level

implications for design: iterative improvements to the usa-

bility of existing features.

Iterative Approach

As Schön points out, prototyping activities are important to

any tool-building endeavor, since they encourage reflection

on the tool‟s design [27]. We first defined the tool‟s scope

using empirical work about end-user debugging strategies, a

scenario, a storyboard, and sample real users from our tar-

get population. The sample users were real participants in a

previous spreadsheet study [11]. For example, the most

successful female was in her twenties and had worked as an

auditor for the past two years, building large and complex

spreadsheets to check clients‟ paperwork (e.g., bank state-

ments and personal records). As a Business major, she also

used spreadsheets in her classes and her personal life, and

had programmed in VB.NET for one class. Continuing with

an iterative approach, we cycled dozens of times through

design, implementation, testing, integration, maintenance,

and usability evaluation. To guide our iterations, we contin-

ued with the earlier methods and also added walkthroughs

with a paper prototype, walkthroughs of the tool itself, and

sandbox pilot sessions.

The Design Impact of Strategies and To-Do Listing

Implications for design based on the overall strategies can

help us frame the functionality of the debugging tool as a

whole, because strategies are followed by the user through-

out the entire task.

Candidate 1: Supporting both comprehensive (getting

an overall understanding of the spreadsheet by visiting

cells in a systematic order) and selective (following up

on the most relevant clues as they come along) debug-

ging strategies by:

- Helping comprehensive users keep track of cells they

want to return to later on.

- Highlighting which cells selective users have looked

at versus those they might have skipped.

In other words, support for the to-do listing stratagem (or “a

user‟s explicit indication of the suspiciousness of code, or

lack thereof” [10]) may help reduce the cognitive load of

both comprehensive and selective users by helping them

keep track of items they need to look at in the future. Table

1 summarizes empirical findings from seven studies en-

couraging support for to-do listing. Note that, since both of

these strategies needed to be supported, StratCel does not

impose an order in which to proceed through to-do items or

their related information.

Candidate 2: Provide explicit support for to-do listing.

Candidate 3: Automatically generate list of items to

check.

To address these implications for design, the core functio-

nality of StratCel involves automatically generating a list of

to-do items and providing actions related to managing a

task list, such as setting the item‟s status and priority (see

Figure 1). Each item in the list is a range of consistent for-

mulas automatically consolidated into one item. Using the

tool, the user can change the status of each to-do item. Item

status can be: (1) unchecked, meaning that the user has not

yet made a decision about whether that item was completed,

(2) checked, meaning that the user has verified that item

and decided s/he does not need to return to it, and (3) to-do,

meaning that the user would like to return to that item later.

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

714

This explicit support for to-do listing helps guard against

users having to use costly workarounds to change the

spreadsheet‟s existing formatting. While the “automatic

generation” implication seems to suggest that users would

have less flexibility in creating their own to-do lists, story-

boards and expert walkthroughs with the prototype backed

the need for this implication.

Candidate 4: Provide relevant information in the con-

text of each to-do item.

StratCel also automatically reports information about each

item to help the user identify it, including: the worksheet

name, an automatically generated name (from headers), a

description pulled from cell comments, the item‟s priority,

and the item‟s spreadsheet address. Following walk-

throughs and sandbox pilots, we decided that the priority

could be encoded in a color instead of having its own field

in the list (see Figure 1c).

One important implication followed by other end-user de-

bugging tools has been to directly overlay or tie hidden

information about the structure of the spreadsheet to the

spreadsheet itself (e.g., [25]). Therefore, in StratCel, we

synchronized cell selection and to-do item selection: select-

ing an item in the list also highlights the cells to which that

item refers, and vice-versa.

The Design Impact of Stratagems

While strategies cover the entire task from start to finish,

the debugging tool has multiple smaller components that

further help make sure the task is accomplished accurately

and quickly. For example, let us say that the first to-do item

is about cell A1. Subtasks for checking off that particular

item may include: examining the formula to make sure it

matches the specification, testing different conditions and

making sure the output is right for them, getting help when

stuck, etc. These smaller components that allow users to act

upon a unit of the to-do list are based on implications for

design about end-user debugging stratagems (e.g., code

inspection, specification checking, testing, and help are

stratagems referred to in the previous sentence).

Candidate 5: Providing information about the nine re-

maining stratagems in the context of each to-do item.

Researchers have so far observed ten end-user debugging

stratagems: code inspection, control flow, dataflow, error

Finding Evidence

To-do listing is an end-user

debugging stratagem.

Used breakpoints, open-close files, paper [10] and “…checks and X’s to show me what

I’d already checked” [30].

To-do listing is poorly sup-

ported in debugging tools.

PowerShell, Forms/3, and Excel: No explicit support for to-do listing [30, 10, 12].

Requests for to-do listing sup-

port transcend individual dif-

ferences.

Males and females using Forms/3 [30], PowerShell [10], and even integrated develop-

ment environments want to-do listing support [28].

Danger: Relying on existing

features to be repurposed.

Misuse of the features can lead to incorrect feedback from tools [20], a loss of format-

ting information, or simply be ineffective. Perhaps why no participants from [12] em-

ployed it in Excel.

Benefit: Shows promise in

increasing debugging success.

Often used in conjunction with code inspection, a female success stratagem [30, 10].

May remind comprehensive Participant SF about cells she found suspicious and selec-

tive Participant SM about cells he had skipped over [11].

Table 1. Summary of empirical findings about the need to support to-do listing in debugging environments.

Figure 1. (a) The to-do list task pane is automatically popu-

lated with consolidated items and their properties (e.g., work-

sheet name, a default item name). The user can mark each

item as “done” (e.g., Total Points_1), “unchecked” (e.g., GPA),

or “to-do” (e.g., Average_8). Other basic to-do list manage-

ment capabilities include adding a comment, (b) filtering on a

status, and (c) assigning priorities to items (the darker the

yellow, the higher the priority).

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

715

checking, help, prior experience, spatial, specification

checking, testing, and to-do listing.

Control flow is the only stratagem that StratCel does not

support. Even though Excel‟s language is declarative, it

would still benefit from better support for implementing

repetition. How StratCel can better support this remains to

be determined.

In the previous section, we addressed how to-do listing can

facilitate the use of the comprehensive and selective debug-

ging strategies. The remaining eight stratagems are all sup-

ported in the context of each to-do item: each provides ad-

ditional information about the item. For example, selecting

an item in the to-do list also selects it in the spreadsheet.

This displays a representative formula in the formula bar

(code inspection) and highlights its value(s) in the spread-

sheet (testing). Also related to formulas is the following:

Candidate 6: An easy way of accessing formulas re-

lated to the current code may help users fix more bugs

through reuse.

To access more information related to the content of a for-

mula, StratCel provides a “Help on Formula” feature to

search several databases for information related to it (the

help stratagem). Figure 2 shows the search result when

looking up a formula containing both the „IF‟ and

„HLOOKUP‟ functions in the Excel documentation (and

three other information sources are also available). Another

type of search that could be added to this list in the future is

a search of Excel documents in a user-defined directory.

This helps the user access the collective prior experience.

Keeping track of done versus to-do items might help organ-

ize prior experience, while Excel‟s recently used formulas

feature may highlight relevant formulas.

Candidate 7: Perfect viewing spatial and dataflow rela-

tionships to help users organize collected data.

Four stratagems remain to be addressed: dataflow, error

checking, spatial, and specification checking. A directed

graph shows the dataflow dependencies between task items

(see Figure 3). The graph can also be used to navigate the

items; hovering over the items in the graph selects the re-

lated item in the task list as well as the related cell(s) in the

spreadsheet. Since consistent formulas are highlighted as

the graph is navigated, this also reveals the dataflow depen-

dencies between spatial areas of consistent formulas. Spa-

tial relationships can also be deduced from status borders:

users can bring up borders around to-do items by clicking

on a button in the ribbon. Areas of unchecked formulas are

blue. To-do items are red. And items marked as “checked”

have a green border. (There is an option for changing the

colors to assist colorblind users.)

This way, inconsistent cells brought to the user‟s attention

by the feedback following support (cells that have red bor-

ders originally), and also from the cells that get highlighted

when a task item is selected.

Finally, item specifications are automatically generated

from comments in the spreadsheet and can also be modified

by the user. They are displayed in the white box at the bot-

tom of the task pane (see Figure 1a) and also in tooltips

when hovering over items in the list (see Figure 1b) or in

the navigation graph (see Figure 3).

The Design Impact of Tactics and Moves

Finally, implications for design based on observed tactics

and moves are the lowest-level observations. As such, they

are most applicable to fine-tuning the features implemented

based on the stratagem implications.

For example, we mentioned a dataflow graph for navigating

the spreadsheet. The tactic of navigating dependencies in

Excel led to the following implication:

Candidate 8: Include inter-worksheet relationships.

Due to this implication for design, StratCel‟s dependency

graph feature displays both inter-worksheet relationships

between to-do items as well as intra-worksheet relation-

ships. Hovering over the nodes in the different worksheets

allows the user to navigate between those worksheets.

Candidate 9: Allow users to easily identify areas of the

spreadsheet on which to focus their attention (e.g., for-

mulas, buggy formulas, unchecked formulas).

To address this implication in StratCel, users can superim-

pose the to-do status of task items onto the spreadsheet.

Figure 2. (a) “Help on Formula” gives the user several options

(Excel Help, MSDN, Bing, and Google) in which to search key

terms from the formula. For example, if the formula looks

like this: , then selecting

Excel looks up “IF LOOKUP” in Excel’s documentation. The

same thing would happen with the other search engines.

Figure 3. Dependencies between to-do items (recall that their

names are automatically generated and can be modified) are

displayed in a directed graph: StratCel visualizes both within

and between worksheet transitions.

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

716

While we originally used a shaded circle in each cell to

display the to-do status of that cell, walkthroughs revealed

that this was overwhelming when the status of many cells

was displayed. We therefore switched to only coloring the

outside borders of spreadsheet areas with a particular status.

For example, Figure 4 depicts an area of the spreadsheet

with many unchecked formulas (blue borders) and two cells

with to-do status (red borders).

Candidate 10: Too much feedback about where possi-

ble errors may lie is overwhelming, so only the most

likely cells to contain errors should be highlighted by

default.

StratCel currently automatically highlights inconsistent

formulas by setting them as to-do items (see red items in

Figure 1 and Figure 4), since those have a high likelihood

of being incorrect. However, other Excel error checking

warnings are ignored to reduce the false-positive rate of

bugs found; sometimes, too much feedback is as bad as

none at all. This lends support to the feedback following

stratagem (following the environment‟s feedback about

where an error may be [10]).

EVALUATION

To gauge the success of employing a strategy-centric ap-

proach in the design of debugging tools, we conducted a

preliminary evaluation of StratCel. In so doing, we won-

dered whether a strategy-centric approach to the design of

debugging tools would lead to an increase in debugging

success, whether StratCel was intuitive to use, and what

design guidelines we could pass on to designers.

Experimental Setup

Procedure and Tutorial

We employed the same procedure as [11]. Participants first

received a short (about 20 minutes) tutorial about Microsoft

Excel‟s auditing tools and StratCel‟s functionality on a

practice task. The StratCel functionality presented included

selecting to-do items from the list, viewing information

related to the item, marking the item as “done”, “to-do”, or

“unchecked”, and adding user-defined to-do items.

Task

The task was also the same as in [11]: “Make sure the

grade-book spreadsheet is correct and if you find any bugs

fix them.” The grade-book spreadsheet contains 1718 cells,

288 of which were formula cells, and two worksheets: one

for the students‟ individual grades and one for summary

statistics for the class. The spreadsheet is also highly for-

matted, containing one blue column, one yellow column,

four gray columns, 30 rows with alternating colors, three

different font colors, 46 cells with bold fonts, five under-

lined fonts, many different font faces, and all borders deli-

miting spreadsheet regions.

This grade-book spreadsheet is real-world. It was selected

from the EUSES Spreadsheet Corpus of real-world spread-

sheets [9], originating from a college. In addition, it has

been used successfully in other studies (e.g., [4, 11]).

While we originally thought the spreadsheet had ten nested

bugs harvested from real users, as was reported in [11] and

also based on our own experience, there were in fact 12

bugs in the spreadsheet (see the Results section for how our

participants used StratCel to find two bugs that had pre-

viously been overlooked). These bugs were unintentionally

introduced by the professor and by spreadsheet users from

[4] when they attempted to add new features to this spread-

sheet. There were: six inconsistency bugs (e.g., omitting

some students‟ grades in calculating the class average for

an assignment), three propagated logic errors (e.g., using

the “>” operator instead of “>=”), and three (instead of the

expected one) logic bugs on individual cells (e.g., counted

lab attendance as a part of the total points). The participants

had a total of 45 minutes to find and fix these bugs.

Unlike in [11], where participants were provided a handout

description of what areas of the spreadsheet were meant to

do, we incorporated the descriptions directly into StratCel‟s

white “specification” field (see bottom of Figure 1a).

Participants

In this pilot study of StratCel, we used five participants of

varied backgrounds and spreadsheet experience. One male

and one female were self-described novices, one male was a

self-described intermediate, and two females were self-

described experts. Our participants were members of two

Seattle area clubs: the females came from a knitting circle

and the males from an archery club. None of them had seen

the new tool before the study. This was the group who had

the StratCel Excel add-in available to them, and we will call

them the “Treatment participants”.

We compared their success to the eight participants from

[11]. There, three males and three females were self-

described spreadsheet experts and one male and one female

described themselves as intermediates (no novices). We

will call these participants the “Control participants”.

We chose to compare StratCel with Excel rather than a re-

search environment to keep the experimental setup as “real

world” as possible for external validity. Therefore, the task

was a real spreadsheet, the bugs were real end-user pro-

grammers‟ bugs, and Excel is a real world environment

with which all of our participants were familiar. Also, Excel

Figure 4. Users can bring up borders around to-do items by

clicking on a button in the ribbon. Areas of unchecked formu-

las are blue. To-do items are red. And items marked as

“checked” have a green border. (There is an option for chang-

ing the colors to assist colorblind users.)

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

717

is a leader at providing broad debugging strategem support:

e.g., dependency arrows, error checking, formula evalua-

tion, watch window, removing duplicates, recently used

functions, help, data validation, what-if analysis. This al-

lowed us to test StratCel‟s main goal, namely supporting all

debugging strategems from a central debugging tool.

There was no significant difference in any background vari-

able between the Control and Treatment groups: age (Con-

trol median: 25, Treatment median: 25), major (Control: 6

non-CS science, 2 non-science; Treatment: 3 non-CS

science, 2 non-science), and computer science experience

(Control median: 0.5 classes, Treatment median: 0 classes).

All thirteen participants had at one point edited spreadsheet

formulas for work, school, or personal reasons.

Two of the Treatment participants (one male and one fe-

male) did have less spreadsheet experience than was ac-

cepted in the Control group; they were self-described no-

vices. We brought these two participants in for two reasons.

First, we wanted to see how they would do in comparison to

the experts from the other group. Second, we wanted to see

how they would do against the experts in their own group.

Analysis Methodology

Since our data were not normally distributed, we employed

the Wilcoxon rank-sum test with continuity correction in

analyzing our quantitative data. This is non-parametric al-

ternative to the t-test.

We also report qualitative observations about the partici-

pants‟ actions and verbalizations. These analyses helped

both triangulate our quantitative findings and further ex-

plain the reasons behind the statistical differences.

Improving Debugging Success

The Treatment participants performed better by every suc-

cess measure: the number of bugs found, the number of

bugs fixed, the time to each bug find and bug fix, the re-

duced impact of individual differences, and participants‟

verbalized satisfaction with StratCel. To further help de-

signers build better end-user debugging tools, we also high-

light those empirically-based guideline candidates that had

the biggest impact on our participants‟ success by listing

them as design guidelines in this subsection.

Number of Bugs Found

In general, participants who had StratCel available to them

were better at finding bugs. A “bug find” was an explicit

statement by the participant that a (buggy) formula was

incorrect. They found more bugs, including two previously

unnoticed bugs, faster, and with less variability resulting

from individual differences.

Specifically, Treatment group participants found signifi-

cantly more bugs (Rank-sum test: Z=-2.639, p=0.0042)

than Control group participants. Figure 5 shows the distri-

bution of bugs found by Control participants (M: 4.50, SD:

2.70) and Treatment participants (M: 9.00, SD: 0.89). This

difference is striking: only one of the participants from the

Control group found nine bugs, whereas all of the Treat-

ment participants found at least nine bugs. (Both Treatment

novices performed at least as well as Control experts.)

Qualitative observations of how participants used StratCel

revealed several reasons for this sharp increase in bug find-

ing success. The first was Candidate 10: Too much feedback

about where errors may lurk is as bad as no feedback at all.

Since StratCel set inconsistent formulas as to-do items by

default, all five participants found those six bugs. For ex-

ample, to do this, the intermediate male participant imme-

diately filtered the task list to only show items automatical-

ly set as to-do: inconsistent formulas. Figure 1b shows his

list right after filtering.

The novice Treatment male and an experienced Treatment

female employed our response to Candidate 9 to find the

inconsistent formulas: Easily find areas of the spreadsheet

on which to focus their attention. He brought the status bor-

ders up immediately to view the items that were automati-

cally given to-do status (i.e., a red border).

The remaining two female participants (one novice) used a

different method: they both walked through the list one

item at a time, starting at the top, and only took on inconsis-

tency items once they reached them in the to-do list. One

mentioned she was able to tell where inconsistencies laid

based on the address of each to-do item being shown. For

example, if an item covered the range from “A1:A3, A5”

that is what showed up in the “address column” of that to-

do item. This allowed her to quickly notice A4 was missing,

which therefore must have been an inconsistent formula:

“This was really helpful because it has a way to say

these are all your formulas… These are the ones you

need to go look at. And I like this part [the address

field] which shows me where I can find all of the formu-

las, so I can see them. For example, on this one, I could

see there was a gap for E16 and I could go back and

look specifically at that cell, because I expect it to be

the same, and see what's going on.”

Overwhelmed by the number of false-positive bug warnings

(Excel green triangles in cell corners), most of the Control

Control Treatment

Group

0

2

4

6

8

10

T
ot
al
F
ou
nd

Figure 5. Treatment group participants (right) found signifi-

cantly more bugs than Control group participants (left).

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

718

group participants were unable to find these inconsistencies.

Our Treatment participants, however, found inconsistencies

in the spreadsheet much more easily (all five participants

found and fixed all six inconsistency errors) and in a variety

of ways. Thus, we would like to reiterate three of the empir-

ically-based candidate guidelines mentioned earlier but now

as validated design guidelines for end-user debugging tools:

Design Guideline 1: With automatic error detection

tools, it is critical to value quality (low number of false-

positives) over quantity (detecting more possible types

of errors). Only cells containing likely errors should be

highlighted by default.

Design Guideline 2: As most tools currently already

do, important information about cells (e.g., to-do sta-

tus) should be overlaid onto the spreadsheet to give the

user a quick overview of the to-do status of both indi-

vidual cells and of the overall spreadsheet.

Design Guideline 3: Some users prefer to get a com-

prehensive understanding of the spreadsheet before fix-

ing bugs (e.g., the novice female), whereas others will

start by trying to fix apparent bugs right away (e.g., the

intermediate male). Since both approaches have advan-

tages and disadvantages, both should be supported.

All participants found at least nine bugs. Other than the six

inconsistency bugs, there were four other bugs inserted by

the researchers [11] and two more that were not noticed by

either the researchers or the Control participants, but which

were found and fixed by the users in this study! These un-

noticed bugs, while fairly easy to fix once spotted, were

well-hidden: one individual cell was in the upper-right cor-

ner of the spreadsheet, and the second was hidden in the

middle of the second worksheet.

These two previously evasive bugs were the crowning glory

of the usefulness of StratCel in bug finding: some hidden

bugs can evade the eyes of many experts and novices alike.

However, the to-do list enabled participants to give an equal

amount of attention to each item: even items in the top-left

corner of the first worksheet and cells in the middle of the

second worksheet.

Design Guideline 4: Strategy-based tools should pro-

vide explicit support for to-do listing.

Design Guideline 5: To improve debugging of end-user

programs, it helps to automatically generate a list of

items to check so that all areas of the code are given

equal attention.

Number of Bugs Fixed

Just as with the number of bugs found, Treatment partici-

pants also fixed significantly more bugs (Rank-sum test:

Z=-2.8905, p=0.0019) than the Control group participants.

Figure 6 shows the distribution of bugs fixed by Control

participants (M: 2.00, SD: 2.3299) and Treatment partici-

pants (M: 8.00, SD: 1.3038). Thus, while Treatment partic-

ipants found twice as many bugs on average than Control

participants, the difference in bugs fixed is even more strik-

ing: Treatment participants fixed four times more errors on

average! (Male and female Treatment novices performed

better than even the most successful Control participant.)

What caused the striking difference in the number of bugs

fixed? A major contributor was that Treatment participants

had found more bugs, therefore also having the opportunity

to fix more. Furthermore, the six inconsistency bugs were

trivial fixes once the users had found them. Had the Treat-

ment group participants only fixed the inconsistencies, they

would have already fixed three times more bugs than the

Control participants on average.

The two to five additional bug fixes varied by participant,

but the methods by which they were fixed always involved

the additional information given in the context of an item.

For example, the intermediate male used Excel‟s “Recently

Used” function library to find a formula used in a different

spreadsheet (the tutorial spreadsheet), which could have

been used to fix one of the most complicated bugs in the

spreadsheet. All of the participants employed the descrip-

tions provided for each item. These helped them fix two

bugs consistently: two bugs on individual cells that were

easy to overlook without StratCel pointing them out, but

straightforward to fix once there (two cells incorrectly took

into account labs as a part of the total grade): none of the

Control participants found or fixed either of those bugs, and

the researchers only knew about one of the two. Each of the

features available in StratCel was used by at least one par-

ticipant, backing the importance of showing related infor-

mation in the context of each to-do item.

Design Guideline 6: Information about the remaining

stratagems should be provided in the context of each to-

do item to provide more information on which to base a

bug fix.

Design Guideline 7: Viewing formulas related to an

item (e.g., the consistent formulas in an inconsistency

case, recently used formulas, or formulas used in files

in a certain directory) might be particularly useful for

improving debugging success.

Control Treatment

Group

0

2

4

6

8

10

T
ot
al
F
ix
ed

Figure 6. Treatment participants (right) fixed significantly

more bugs than Control participants (left).

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

719

Time to Each Bug Find and Fix

Spreadsheet debugging is often a time-sensitive activity,

whether a trained accountant does it [21] or a young clerk

as was the case in the Lehman-Barclays mix-up. Thus,

another important measure of debugging success in addition

to the number of bugs found and fixed is how long it took

participants to find and fix those bugs.

On average, Treatment participants found and fixed each

bug consistently faster than the Control participants. The

Wilcoxon rank-sum test allows us to measure statistical

difference in bugs found and fixed based on order, without

worrying about missing data such as those of participants

who never found or fixed a bug.

The advantage of Treatment participants was clear from the

very beginning of the task. Treatment participants found the

first bug significantly faster (Rank-sum test: Z=2.62,

p=0.0044) and fixed it significantly faster (Rank-sum test:

Z=2.8663, p=0.0021) than the Control participants. Treat-

ment participants also found and fixed all of the remaining

bugs significantly faster than Control participants (up to the

tenth bug found, after which there was not enough data to

prove significance, with only one Treatment participant

finding and fixing eleven bugs total).

Thus, when time is short, StratCel users should be able to

more quickly pinpoint errors and their solutions from the

very start and keep that advantage throughout the task. It

also appears that the more complex the spreadsheet is, the

more useful StratCel will become, though this remains to be

tested in future studies.

Closing Gaps Based on Experience and Gender

Another surprising discovery was that the Treatment

participants performed very similar to one another, despite

their individual differences. In previous studies on end-user

debugging, both gender (e.g., [3]) and experience (e.g.,

[10]) have impacted end-user debugging success.

Also, recall that even the novices from the Treatment group

performed at least as well as the most experienced and

successful Control participants. When comparing Treatment

novices to Treatment experts, there was little variation

between the Treatment particiants, despite their very

different backgrounds: the SD was twice as great for the

Control group than the Treatment group. Treatment novices

did not do much worse than Treatment intermediates and

experts. In particular, for the Control group, bugs found

ranged from 1-9 and bugs fixed from 0-6. In the Treatment

group, bugs found ranged from 9-11 and bugs fixed from 8-

11. Since there is a much less pronounced difference

between the less experienced and the more experienced

participants in the Treatment group, it appears that StratCel

helps everyone, and especially less experienced users. The

following quote comes from the novice Treatment female:

"I feel like it would be extra useful for someone like me

who, well, I can use Excel and I can figure it out, but,

like, I'm definitely not an expert at Excel. […] I think

the only problems I had were with the Excel functions I

hadn't learned. This is like a really good way of helping

me keep track of what I've done and not get lost."

In terms of gender, comparing the median number of bugs

found (CF: 4.5, TF: 9.0, CM: 5.0, TM: 9.0) and fixed (CF:

3.5, TF: 9, CM: 2.5, TM: 8.5) by females and males in the

Control and Treatment groups, we noticed that there were

few gender differences between them. Even so, Treatment

participants were a little closer to each other than Control

participants in terms of success: meaning that StratCel

helped both males and females.

Overall Experience: StratCel’s Usability

While we did not ask our participants for feedback beyond

their verbalizations during the task, the participants were

nevertheless anxious to give it.

Several comments revealed possible iterative improvements

to the tool. For example, participants had a feature available

to add to-do items to the automatically generated list. The

most successful Treatment female used it as a way to add

two comments for the next person who will look at the

spreadsheet: one about how little she trusts the spreadsheet

and a second about a change she would have liked to have

made to one of the formulas in the future. The most suc-

cessful male also added a custom to-do item, but he did so

by mistake. Their feature request was to add the functionali-

ty of removing items from the to-do list.

Another improvement requested by the two experienced

females was the capability to sort the to-do list by clicking

on the field headers. One of the potentially most critical

problems with the to-do functionality is that it is too easy to

check off items as done, to never be returned to again. One

of the experienced females put it this way:

"The only thing that I was thinking about is that it's re-

ally easy to say 'Oh, I've looked at this.' and just check

it off. And I don't know if there could be a way to make

sure that that's what they meant. […] So, I actually had

something… Where I went through, and I think I'm on

one line but I'm actually on another when I check off

the task being done. But I think that's just... A user has

to be smart enough to know not to do that. There's only

just so much that you can help a user avoid."

One possibility for making sure that the user really meant to

check something off would be to list each of the “stratagem

tool components” (e.g., the specification) as individual sub-

tasks. This way, users would have to check off several sub-

tasks in order to achieve an overall “check” for the item.

Further research is needed to determine the best method.

Overall, however, the participants‟ unrequested comments

were very positive, and most immediately thought of ways

to apply StratCel to their own day-to-day tasks. Here are

selected few of the quotes:

 "So, can I use your tool? You should sell this and make a

million dollars!”

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

720

 “I think this would be useful for my complex accounting

spreadsheets. If you would like to share the tool, I would

love to try it on those.”

 "Looking at [StratCel], I was thinking I have to have a

way of tracking my [knitting] patterns. So things that…

Ok. I have a pattern and I have steps I have to go

through. And I need a way to track them.”

 "And this is straight-forward and makes a lot of sense.

When you look at it, you know what it is. There are lots of

tools, where you can tell that people said, 'well… there's

just a workaround and you can just do it this way'. But

this one, it just seemed very straightforward and it builds

on everything from Excel.”

CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that a strategy-based ap-

proach alone can be effectively applied in the design of

debugging and troubleshooting tools to improve the cor-

rectness of end-user programmers‟ code.

As a part of this effort, we instantiated our approach in

StratCel: a strategy-based add-in for one of the most widely

used end-user programming environments, Excel. StratCel

addresses implications for design at three levels: low-level

moves and tactics, mid-level stratagems, and high-level

strategies.

As with any experiment, our setup had both advantages and

disadvantages. The small treatment groups gave us the op-

portunity to deeply examine our participants‟ rich qualita-

tive and quantitative data, allowing us to see how and why

StratCel‟s users were more successful. This ultimately

helped us promote several design candidates to design

guidelines. To address the potential sampling bias, we vali-

dated our results through triangulation and provided de-

scriptive explanations through chains of logic (e.g., [29,

32]). Follow-up studies could further increase the internal

(e.g., through a larger lab experiment) and external (e.g.,

through field studies) validity of this work.

Our results showed that tools can be built to support a com-

prehensive understanding of strategies directly. We em-

ployed implications derived from higher strategy levels

(stratagems and strategies) to frame the functionality of the

tool as a whole, while implications based on lower levels of

strategy (moves and tactics) helped us fine-tune individual

features. For example, support for the to-do listing strata-

gem provided a way to reduce end-user programmers‟ cog-

nitive load, by helping comprehensive participants better

keep track of to-do items to revisit and by helping selective

participants see which formulas they had skipped. The re-

maining nine stratagems defined the core activities which

needed to be supported within the context of each to-do list

item (e.g., specifications, help about the formula as a whole,

etc.) in our instantiation. Finally, the implications from the

lower strategy levels (moves and tactics) helped us fine-

tune the features supporting each stratagem: for example,

making sure that the dataflow dependencies showed inter-

worksheet relationships and facilitated navigating between

items on different worksheets.

Even for an environment as mature as Excel, the addition of

a strategy-based tool did improve end-user programmers‟

debugging success using many measures:

 Participants who had StratCel available to them found

twice as many bugs, fixed four times as many bugs, and

in only a fraction of the time.

 While StratCel helped everyone, it was particularly help-

ful to less experienced users. StratCel also helped males

and females equally.

 Participants found StratCel intuitive to use and imme-

diately thought of ways in which the tool applied to their

day-to-day work.

This approach to end-user debugging tool building has

raised many questions, opening the door to opportunities

for future research.

 The current instantiation of StratCel centers on the to-do

listing stratagem, supporting the other stratagems within

the context of each to-do item. A future goal might be to

create a new tool that centers around one of the other

stratagems (say code inspection or testing) and that sup-

ports all other nine stratagems within the context of either

a formula or of an output value, in those two cases re-

spectively. Would the addition of another strategy-

centered tool improve users‟ success even further?

 Even within its current instantiation of the implications

for design, each of StratCel‟s components can be im-

proved with further research. For example, StratCel cur-

rently only highlights inconsistency errors, but both Excel

and other tools provide many other automatically gener-

ated warnings. An ordered list of the available automatic

spreadsheet error detection algorithms and their false-

positive rates would be required to further improve the

error checking component, in order to know which algo-

rithms to turn on by default. In general, our approach

does not compete with related tools: a better testing algo-

rithm or a better error checking algorithm can be plugged

into StratCel‟s support for that particular stratagem.

 Finally, related empirical work has drawn parallels across

programming populations and environments: from

spreadsheets, to scripting environments, and integrated

development environments (recall Table 1). Can Strat-

Cel‟s core functionality be transferred to one of these

other environments? If so, will it also lead to increased

debugging success there? Do these concepts change when

users are not able to manipulate the code directly and

have to work at a higher level of abstraction (e.g., when

troubleshooting a printer failure)?

In summary, we have shown that a strategy-based approach

to building debugging tools is both achievable and benefi-

cial. Powerful but disconnected features may be the ap-

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

721

proach of the past, and be replaced by features that work

together to support users‟ effective debugging and trouble-

shooting strategies.

ACKNOWLEDGMENTS

We are grateful to the participants of our study. We would

also like to thank Roland Fernandez for his thoughtful input

on this paper‟s write-up. This work has been supported in

part by NSF grants 0325273 and 0917366.

REFERENCES
1. Abraham, R. and Erwig, M. UCheck: A spreadsheet unit

checker for end users. Journal of Visual Languages and Com-

puting 18, 1 (2007), 71-95.

2. Bates, M. Where should the person stop and the information

search interface start? Information Processing and Manage-

ment 26, 5 (1990), 575–591.

3. Beckwith, L., Burnett, M., Wiedenbeck, S., Cook, C., Sorte,

S., and Hastings, M. (2005) Effectiveness of end-user debug-

ging software features: Are there gender issues? In Proc CHI

2005, ACM Press (2005), 869-878.

4. Beckwith, L., Inman, D., Rector, K., and Burnett, M. On to the

real world: Gender and self-efficacy in Excel, In Proc.

VL/HCC 2007, IEEE Press (2007), 119-126.

5. Burnett, M., Cook, C., and Rothermel, G. End-user software

engineering. Communications of the ACM 47, 9 (2004), 53-58.

6. Cypher, A. and Smith, D. KidSim: End-user programming of

simulations. In Proc. CHI 1995, ACM Press (1995), 27-34.

7. Davis, J.S., Tools for spreadsheet auditing, International Jour-

nal of Human-Computer Studies 45 (1996), 429-442.

8. EUSPRIG 2009. Spreadsheet mistakes news stories, European

Spreadsheet Risks Interests Group site,

http://www.eusprig.org/stories.htm.

9. Fisher II, M. and Rothermel, G. The EUSES Spreadsheet Cor-

pus: a shared resource for supporting experimentation with

spreadsheet dependability mechanism. In Proc. 1st Workshop

on End-User Software Engineering (2005), 47-51.

10. Grigoreanu, V., Brundage, J., Bahna, E., Burnett, M., ElRif,

P., and Snover, J. Males‟ and females‟ script debugging strate-

gies. In Proc. Second International Symposium on End-User

Development, Springer-Verlag (2009), 205-224.

11. Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J., and

Rector, K. Females‟ and males‟ end-user debugging strategies:

A sensemaking perspective. Technical Report:

http://hdl.handle.net/1957/12074 (2009). (Under Review)

12. Grigoreanu, V., Burnett, M., and Robertson, G. Design impli-

cations for end-user debugging tools: A strategy-based view.

Technical Report: http://hdl.handle.net/1957/12443 (2009).

(Under Review)

13. Hayes, F. Rules for Users. http://www.pcworld.com/

businesscenter/article/152509/rules_for_users.html (2008).

14. Igarashi, T., Mackinlay, J., Chang, B. W., and Zellweger, P.

Fluid visualization of spreadsheet structures, In Proc. Sympo-

sium on Visual Languages 1998, IEEE Press (1998), 118-125.

15. Kandogan, E., Haber, E., Barrett, R., Cypher, A., Maglio, P.,

and Zhao, H. A1: end-user programming for web-based sys-

tem administration. In Proc. UIST 2005, ACM Press (2005),

211-220.

16. Kelleher, C., Pausch, R., and Kiesler, S. Storytelling Alice

motivates middle school girls to learn computer programming.

In Proc CHI 2007, ACM Press (2007), 1455-1464.

17. Nardi, B. and Miller, J. The spreadsheet interface: a basis for

end user computing. In Proc. INTERACT 1990, Elsevier

(1990), 977 – 983.

18. Nardi, B. A small matter of programming: Perspectives on

end-user computing. MIT Press (1993).

19. Panko, R. and Orday, N. Sarbanes-Oxley: What about all the

spreadsheets? European Spreadsheet Risks Interest Group

(2005), 45 pages.

20. Phalgune, A., Kissinger, C., Burnett, M., Cook, C., Beckwith,

L., and Ruthruff, J. Garbage in, garbage out? An empirical

look at oracle mistakes by end-user programmers, In Proc.

VL/HCC 2005, IEEE Press (2005), 45-52.

21. Powell, S., Baker, K., Lawson, B. An Auditing Protocol for

Spreadsheet Models, Information and Management 45, 5

(2008), 312-320.

22. Rode, J., Toye, E., and Blackwell, A. The fuzzy felt ethnogra-

phy - understanding the programming patterns of domestic ap-

pliances. Personal and Ubiquitous Computing 8, (2004), 161-

176.

23. Rosson, M., Sinha, H., Bhattacharya, M., and Zhao, D. Design

planning in end-user web development. In Proc. VL/HCC

2007, IEEE Computer Society (2007), 189-196.

24. Scaffidi, C., Shaw, M., and Myers, B. Estimating the number

of end users and end-user programmers. In Proc. VL/HCC

2005, IEEE Computer Society (2005), 207-214.

25. Sajaniemi, J. Modeling spreadsheet audit: A rigorous approach

to automatic visualization. Journal on Visual Languages and

Computing 11, 1 (2000), 49-82.

26. Shiozawa, H., Okada, K., and Matsushita, Y. 3D interactive

visualization for inter-cell dependencies of spreadsheets. In

Proc. InfoVis 1999, IEEE Press (1999), 79-82.

27. Schön, D. The Reflective Practitioner: How Professionals

Think in Action. New York: Basic Books, 1983.

28. Storey, M., Ryall, A., Bull, R., Myers, D., and Singer, J.

TODO or to bug: Exploring how task annotations play a role

in the work practices of software developers. In Proc. Software

Engineering, 251-260, (2008).

29. Strauss, A. Qualitative Analysis for Social Scientists. Cam-

bridge, England: Cambridge University Press (1987).

30. Subrahmaniyan, N., Beckwith, L., Grigoreanu, V., Burnett,

M., Wiedenbeck, S., Narayanan, V., Bucht, K., Drummond,

R., and Fern, X. Testing vs. code inspection vs. what else?

Male and female end users‟ debugging strategies, In Proc. CHI

2008, ACM Press (2008), 617-626.

31. Whittaker, D. Spreadsheet errors and techniques for finding

them. Management Accounting 77, 9 (1999), 50–51.

32. Yin, R. Case Study Research, Design and Methods, 3rd edition,

Thousand Oaks, CA, Sage Publications (2002).

CHI 2010: End-User Programming II April 10–15, 2010, Atlanta, GA, USA

722

