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ABSTRACT 
Recent work in muscle sensing has demonstrated the poten-
tial of human-computer interfaces based on finger gestures 
sensed from electrodes on the upper forearm. While this 
approach holds much potential, previous work has given 
little attention to sensing finger gestures in the context of 
three important real-world requirements: sensing hardware 
suitable for mobile and off-desktop environments, elec-
trodes that can be put on quickly without adhesives or gel, 
and gesture recognition techniques that require no new 
training or calibration after re-donning a muscle-sensing 
armband. In this note, we describe our approach to over-
coming these challenges, and we demonstrate average clas-
sification accuracies as high as 86% for pinching with one 
of three fingers in a two-session, eight-person experiment. 
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INTRODUCTION 
Traditional computer input devices leverage the dexterity of 
our fingers through physical transducers such as keys, but-
tons, and touch screens. While these controls make great 
use of our abilities in common scenarios, many everyday 
situations command the use of our hands for purposes other 
than manipulating an input device. For example, when 
wearing gloves in the cold, a mobile phone’s interface can 
be difficult or impossible to use. Similarly, when someone 
is jogging and listening to music on their music player, their 
arms are typically swinging freely and their eyes are fo-
cused on what is in front of them, making it awkward to 
reach for the controls to skip songs or change the volume. 
In these situations, people need alternative input techniques 
for interacting with their computing devices. 

One research area that offers possibilities for hands-free 
interfaces is computer vision. However, several issues such 

as occlusion and lighting limit the opportunities for this 
technology. Similarly, speech recognition enables hands-
free control of some devices, but can be socially awkward 
in many settings. Another approach that has received much 
recent attention is hand and finger gesture recognition 
through forearm muscle sensing. This approach allows 
people to use their fingers for input without any sensing 
technology on or near their hands. Several efforts have 
demonstrated the feasibility of classifying finger gestures 
this way in real time [5,7]. While muscle-sensing tech-
niques offer promise, previous work suffers from several 
key limitations. First, in many existing systems, users are 
tethered to high-end equipment employing gel-based sen-
sors affixed to users’ arms with adhesives [4,6,7]. Second, 
previous efforts attempting to classify an individual’s finger 
gestures across sessions have yielded little success [3]. 

In this note, we extend previous muscle-computer interface 
research by presenting techniques for finger gesture classi-
fication using our wireless muscle-sensing armband. We 
also demonstrate the effectiveness of our approach through 
a two-session, eight-person experiment. 

BACKGROUND AND RELATED WORK 
When we decide to take a step, pick up a pen, or simply 
press our thumb to our forefinger, our brain sends messages 
that traverse our nervous system and eventually arrive at 
motor neurons. Motor neurons then stimulate muscle fibers 
in our skeletal muscles causing movement or force. This 
process generates electrical activity that can be measured as 
a voltage differential changing over time. While the most 
accurate method of measuring such electrical activity re-
quires inserting fine needles into the muscle, a noisier sig-
nal can be obtained using electrodes on the surface of the 
skin. This general electrophysiological technique is known 
as electromyography (EMG). EMG is most commonly used 
in clinical applications such as assessing muscle function 
during rehabilitation. Many arm prosthetics also utilize 
EMG by mapping degrees of freedom to contractions of 
large remaining muscles such as those in the shoulder [2]. 

More recently, several efforts have explored a variety of 
approaches to employing muscle sensing for human-
computer interaction. Costanza et al. created and evaluated 
a system where flexing one’s bicep controlled advancing 
through their voicemail [1]. Bicep flexing can be performed 
quite subtly and detected robustly, but is limited in applica-
tion because it only provides one bit of input per arm. 
Another scheme investigated in previous work is detecting 
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wrist movements similar to those used to control a joystick 
for controlling games and RC cars [4,8,9]. Wrist gestures 
are advantageous for muscle-computer input because they 
offer many degrees of control and are detectable from mus-
cles in the forearm. However, wrist-based gestures can be 
somewhat awkward to perform and lack subtlety in many 
circumstances. Conversely, many finger gestures can be 
performed easily and discretely even when our hands are 
moving, holding objects, or wearing gloves. Saponas et al. 
have demonstrated the feasibility of recognizing a wide 
variety of such finger gestures for muscle-computer input 
[6,7]. While their work provides classification techniques 
that are effective in many situations including pressing fin-
gers on a surface and pinching fingers in air, they employ a 
high-end sensing device using wired sensors that require gel 
and adhesives. Furthermore, they require their system to be 
trained and calibrated each time sensors are applied to a 
person’s arm. This is a common limitation of existing mus-
cle-computer interfaces. In fact, in one of the few attempts 
to overcome this limitation, Ju et al. explored a variety of 
machine learning and adaptation approaches with little suc-
cess at maintaining high classification accuracy without 
requiring new training data each time electrodes are reap-
plied to people’s arms (their best method for classifying 
pinch gestures yielded a mean accuracy of 58% )[3]. 

We seek to extend previous work by enabling classification 
of finger gestures with no new training or calibration after 
sliding on a reusable wireless muscle-sensing armband. 

OUR WIRELSS MUSCLE-SENSING SYSTEM 
In this section, we describe our muscle-sensing hardware, 
gesture sets, and classification techniques. 

Wireless Muscle-Sensing Armband 
Our vision for muscle-computer interfaces is a thin arm-
band worn on the upper forearm, capable of sensing a varie-
ty of finger gestures. To this end, we have created an em-
bedded wireless muscle sensing device combined with elec-
trodes and a sports sweatband (See Figure 1). Our embed-
ded device has two analog muscle sensing channels and a 
Zigbee wireless radio. During the development process, we 
discovered that six channels were more appropriate for ro-
bust gesture recognition. As a result, our right-hand arm-

band carries three of our two-channel devices wired togeth-
er (See Figure 1b). Each sensing channel consists of one 
pair of silver-chloride-coated electrodes connected to a dif-
ferential amplifier with very high input impedance (DC 
gain 20 dB). These are arranged into two sets of three chan-
nels; one set on top of the forearm the other set on the bot-
tom. The armband streams raw data to a desktop computer 
where all processing takes place. In future iterations, some 
preprocessing might occur onboard and the rest of the 
processing could be carried out on a mobile device. 

Gesture Sets 
We explored two separate but related gesture sets for our 
muscle-computer interface. Our first gesture set consists of 
pinching one’s index, middle, or ring finger together with 
their thumb. This can be performed in a wide variety of 
situations and can even be done when already holding or 
carrying objects. In our second gesture set, users rest their 
hand on a surface and press down with one of their index, 
middle, or ring fingers. Pressing on a surface is a gesture 
that can be performed when someone is resting their hand 
on a table, the arm of a chair, or even on one’s own leg. 
Both of these gesture sets leverage isometric muscle con-
traction; that is, during the gesture, a user’s muscles contin-
ue to fire without finger movement. 

Similarly to Saponas et al., we combine these gestures on 
the right hand with a squeezing action in the left hand to 
create a bimanual select-plus-activate compound gesture 
[7]. This approach has three advantages. First, it gives the 
user an explicit method to indicate their intention to provide 
input. Second, a large squeezing action can be robustly de-
tected with few false positives even during arm movement. 
Third, users can rapidly perform several of the same gesture 
in a row by pinching with their right hand while using their 
left hand to “pump” multiple successive squeezes. 

Finger Gesture Training and Classification Technique 
We follow a gesture classification scheme similar to that of 
Saponas et al [7]. They employ a machine learning ap-
proach using a support vector machine (SVM) that classi-
fies gestures 32 times a second. Because of the limitations 
of sampling data with our microcontroller and transmitting 
them over Zigbee to a desktop computer, we only compute 
twelve classifications per second. Each classification result 
is obtained by first collecting 32 samples for each of our six 
sensing channels. We then extract the following types of 
features from the window of data: the amplitude of each 
channel as the root mean square (RMS) amplitude of the 
fully rectified signal, the RMS ratios among all six chan-
nels, spectral power in several frequency bands, the ratio of 
high-frequency energy to low-frequency energy within each 
channel, and lastly the phase coherence among each pair of 
channels. All of these features are combined to create a 54-
element feature vector over a 30-millisecond window. The 
values of the feature vector are normalized based on a four-
second calibration step where users sequentially pinch each 
of their fingers. We use these feature vectors both for train-
ing the SVM as well as for classifying gestures. 

 

Figure 1. a) Our embedded wireless muscle-sensing device 
(left) and an electrode (right) pictured with a quarter for 
scale b) Our wireless-muscle sensing armband 

CHI 2010: Brains and Brawn April 10–15, 2010, Atlanta, GA, USA

852



 

Figure 3. Classification results for pinching index, middle, 
and ring fingers in air from sessions on two separate days. 
Error bars for the mean represent standard deviation. 

To train our system, users perform a sequence of actions 
while the system computes and records feature vectors from 
their muscle data. To aid in this process, the computer 
guides the user through the training phase by presenting a 
finger gesture to perform for four seconds, giving the user a 
one-second break, then showing another gesture to perform. 
The system then keeps the feature vectors computed over 
the second half of each gesture as “good” data for training.  

After training an SVM, it can be used to classify subsequent 
gestures. In our system, we attempt to classify every feature 
vector, yielding approximately twelve classifications per 
second. While a user is performing a gesture, the system 
might correctly identify their gesture most of the time, but 
occasionally misclassify some segments of data. We at-
tempt to be robust to these circumstances by adding a level 
of smoothing where the current recognized gesture at any 
time is computed as the majority vote of the previous six 
classifications. If the system observes three consecutive 
identical classifications, that result will override the vote. 

As mentioned in the Gesture Sets subsection, our complete 
finger gestures consist of a bimanual select-and-activate 
action where a user, for example, might pinch with their 
right index finger and then squeeze their left hand. The us-
er’s right-hand pinching gestures are continually classified 
as described above, but are only used as an input to the sys-
tem at the moment they squeeze their left hand to activate 
the gesture. We infer left-hand activation using a gradient 
detector that watches for large changes in muscle signal 
amplitude. To reduce false positives due to motion artifacts 
caused by arm shifting and twisting, we further filter our 
gradient detector by requiring that activation be at least 
35% of the maximum amplitude recorded during calibration 
as well as a ratio of at least two to one of low-frequency 
energy to high-frequency energy. 

EXPERIMENT 
We evaluated the effectiveness of our wireless armband and 
classification approach in a multi-session experiment. Eight 
participants (four female) from our research organization 
volunteered to participate in our experiment. They ranged 
in age from 23 to 31. Seven of our participants were right-
handed and one participant was left-handed; however, each 
of our participants performed the pinching and pressing 
gestures with their right hand. None of our participants had 
any known neuromuscular diseases. We attempted to place 
the armbands in a similar position on every participant. 

Each participant took part in two sessions occurring on two 
separate days. In the first session, participants first trained 
the system to recognize their finger gestures then tested the 
system’s ability to recognize their gestures. Training en-
tailed providing twelve examples for each finger gesture in 
both gesture sets. Testing included fifteen attempts of each 
gesture. Participants did this for both gesture sets, with the 
order counter-balanced across participants.  

Following the first training and testing segment, we re-
moved the armbands from participants’ arms and gave them 
a short break to get up and walk around the room. After 
their break, we had them repeat the process of providing the 
system training data and then testing the recognition ability 
of the system. As illustrated in Figure 2, both testing phases 
during their first day used the training data they initially 
provided after putting on the muscle-sensing armbands. 
This tested the ability of the system to recognize gestures 
when the training and test data corresponded to identical 
electrode placement and when the armband was removed 
and re-donned between training and testing, leading to 
slightly different electrode placements. Approximately 48 
hours later, participants came back for a second session and 
again engaged in a training and testing session. During test-
ing on the second day, the system used the training data 
provided during the second part of the first day’s session, 
challenging the system to classify their gestures with no 
new training or calibration from the placement of the arm-
band on the second day. 

Results 
Our metric for performance is simply the accuracy with 
which our system can classify people’s finger gestures. 
From our experiment, we can evaluate this ability based on 
three scenarios: when the system is trained immediately 
before use, when the system was trained earlier that day but 
the armband has been removed and reapplied, and lastly 
when no new training or calibration is provided that day.  

 

Figure 2. Experimental Setup: Eight participants engaged in 
three train/test sessions on two separate days. 
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Our system performed best at recognizing the pinching ges-
ture, with mean accuracies for same session, short break, 
and one-day break of 86%, 87%, and 86%, respectively; 
chance was 33% (See Figure 3). We found that our system 
classified pressing gestures slightly less well, with a mean 
accuracy of 76% when collecting training data immediately 
prior to testing, 73% after a short break, and 66% when 
using training from a previous day (See Figure 4). 

DISCUSSION AND FUTURE WORK 
Reflecting on the less robust classification of our partici-
pants’ pressing-on-a-surface gestures, we think the primary 
source of misclassification is the variety of methods people 
can employ when pressing a single finger down on a sur-
face. For example, they can relax their other fingers or they 
can pull them away from the surface. Similarly, they can 
use muscles in their hand, forearm, or shoulder to exert 
force. However, our system did perform well for two of our 
participants, suggesting that it may be possible with prac-
tice or feedback to classify these gestures. 

The ability of our system to classify finger pinching ges-
tures using only training data collected on a different day is 
an encouraging result toward the vision of a muscle-
computer interface armband that can be quickly slipped on 
before starting a task in the lab or heading out the door for a 
run. In fact, for five of our eight participants, the system 
recognized their day-two pinching at an accuracy of 95%.  

We believe there are two main reasons why our system 
performed much better for a little over half of our partici-
pants. First, as with any new input device or tool, people 
have different initial intuitions and abilities. In the case of 
our muscle-computer input technique, the more consistently 
a user gestures, the better the system will perform. We be-
lieve that over time, system performance would improve for 
any given user as they develop a more repeatable form of 
their gestures. Such changes over time might also warrant a 
method for periodically updating the system with more re-

cent training. A second source of variance among users is 
the matching of their physiology to the layout of electrodes 
on the armband and our placement of the armband on their 
arm. While we did not observe an obvious systematic effect 
of body type in our experiment, it is a variable worthy of 
further investigation. We also think it may be possible to 
further improve on our results by reducing the impact of 
armband orientation by creating an armband with a dense 
array of electrodes where the system detects which subset 
of electrodes will be most effective. 

CONCLUSION 
In this note, we have presented a system for accurately clas-
sifying pinch gestures with no new training or calibration 
after re-donning a wireless armband. Our work is a step 
towards making muscle-computer interfaces a more prac-
tical possibility for controlling computing devices in mo-
bile, off-the-desktop situations where traditional input de-
vices are inconvenient or impossible to use. 
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Figure 4. Classification results for pressing index, middle, 
and ring fingers on a surface from sessions on two separate 
days. Error bars for the mean represent standard deviation. 
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