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ABSTRACT 
We present a novel integration of a brain-computer 
interface (BCI) with a multi-touch surface. BCIs based on 
the P300 paradigm often use a visual stimulus of a flashing 
character to elicit an event related potential in the brain’s 
EEG signal. Traditionally, P300-based BCI paradigms use a 
grid layout of visual targets, commonly an alphabet, and 
allow users to select targets using their thoughts. In our new 
system a multi-touch table senses objects placed upon its 
surface and the system can highlight the objects on the table 
by flashing an area of light around them. This allows us to 
construct a P300-based BCI that uses a user-assembled 
collection of objects as targets, rather than a pre-determined 
grid layout. An experiment shows that our new paradigm 
works just as well as the traditional paradigms, thus 
highlighting the potential for BCIs to be integrated in a 
broader range of situations. 
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INTRODUCTION 
A brain-computer interface (BCI) is a communication 
system where the user’s commands “do not depend on the 
brain’s normal output pathways of peripheral nerves and 
muscles” [9]. A BCI thus makes it possible to control a 
computer using only your thoughts. BCI methods include 
invasive and non-invasive forms with a variety of sensing 
modalities [2]. The non-invasive form using 
electroencephalography (EEG) is one of the most common 

types of BCI used in HCI studies, as it is generally 
considered to be the least expensive and least complicated 
method. We use an EEG-based BCI that uses the P300 
event related potential (ERP) which we describe in the next 
section.  

BCIs can be used as a communication channel for people 
with severe motor impairments such as amyotrophic lateral 
sclerosis (ALS). However, there is a growing interest in 
their use in more general HCI applications [6]. Two main 
strands of work within HCI have emerged: the 
understanding and improvement of the BCI control 
paradigms (e.g., [1,7]), and the embedding of BCI in new 
HCI situations. Our work is firmly in the latter strand. 

Previous P300-based BCIs have typically used a grid-based 
spelling task which we describe in the next section. A grid 
of flashing characters or symbols is displayed on a monitor. 
Our main contribution is that we demonstrate how we can 
use physical objects as the targets to which the user should 
attend. We place objects freely on a multi-touch table where 
their shape is detected by a simple computer vision system. 
We then “flash” the objects by surrounding them with an 
area of light.  

In an experiment we show that users are easily able to 
indicate their interest in objects on the multi-touch table 
using the P300-based BCI. In fact, using a within-subjects 
comparison, we show that their success rate is slightly 
better than on a standard spelling task. 

P300-BASED SPELLER 
We describe a P300-based spelling task so we can both 
introduce how P300-based BCIs operate, and use this task 
as a reference in our experiment. The P300 brain waveform 
is an ERP which is an increase in voltage of about 10μV 
peaking around 300ms after the stimulus. It is triggered by 
an auditory, visual or somatosensory stimulus which is 
infrequent or particularly significant amongst other more 
routine stimuli. Its use as a BCI was pioneered by Farwell 
& Donchin [4]. Typical P300-based BCI systems use a 
spelling task. In such systems, a participant observes a grid 
of characters, see Figure 1. They attend to one of the 
characters and are instructed to count the number of flashes 
of that character. Each character in the grid then flashes 
several times in a random order. The target character thus 
only flashes relatively infrequently; this is thought to be 
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important for the performance of the BCI. In addition, the 
type of pattern used is an important research problem 
[1,7].Figure 1 shows the screen of the P300-based speller 
from Guger Technologies (g.tec) which follows the 
paradigm described above [5]. Each flash lasts for 60ms, 
followed by a dark-time of 10ms.  

In our experiment we used the g.tec g.MOBIlab+ 8 channel 
EEG system which is wireless and portable. Electrodes 
were placed at: Fz, Cz, P3, Pz, P4, PO7, Oz, PO8 based on 
the international 10-20 system, see Figure 1. The reference 
was placed on the right ear-lobe and the ground on the 
forehead. The g.tec system provides tools in MATLAB® 
2008b and Simulink® to do an offline phase to train a P300 
classifier and then an online phase as shown in Figure 1 and 
discussed above. The P300 classifier is trained using linear 
discriminant analysis (LDA). A full review of P300-based 
BCIs is beyond the scope of this paper, but the g.tec speller 
paradigm and the associated hardware and software are 
typical of such systems. We describe the use of the software 
in more detail in the description of the experiment. 

We are not aware of any work that attempts to integrate a 
P300-based BCI with physical objects. In [3], Edlinger et 
al. present an integration of a P300-based BCI with an 
immersive virtual environment where participants 
interacted with stimuli presented on a separate 2D display.  

P300-BASED BCI USING MULTI-TOUCH SURFACE 
Our aim is to replace the normal grid of characters with 
physical objects. Figure 2 shows the operation of the 
resulting system. Objects are placed on a multi-touch table. 
The multi-touch table recognizes the objects’ outlines and 
runs image processing algorithms to generate areas of light 
(object blobs) around those objects. This is interfaced with 
the g.tec software so that a participant can select the 
objects. 

Object Sensing & Image Processing 
We used a multi-touch table built in our laboratory [8]. The 
interaction surface is 1040x780mm with a rough 1pixel: 
1mm precision. It uses a Hitachi CP-X275 XGA projector, 
a Point Grey Dragonfly2 Firewire camera. The table uses 
internal infra-red LED illumination. 

  
 

 

Figure 2: A participant interacting with the multi-touch P300-
based BCI. Six objects have been placed. Top Left: The phone 

is flashed by surrounding it with light. Top Right: a non-
object flash. Bottom: the area around a necklace is flashed. 

 

An image processing pipeline was built using Java and the 
DirectShow Java wrapper (DSJ), Figure 3 gives an 
overview. At the start of the application, a background 
image was captured. This raw, single channel camera image 
shows the underside of the table’s surface along with its 
supports. Items were placed on the table, and a new image 
was captured. Background subtraction and cropping were 
applied. The image was passed through a low-pass filter, 
and thresholded at a grey-level of 40 to create a noisy 
binary image. To remove noise, the image was opened. The 
image was then dilated 15 times to create a blob larger than 
the image of the object. A connected components algorithm 
was applied to detect and label regions. 

This process was shown to work for any number of 
reasonably sized non-overlapping objects. It works with 
fine objects as evidenced by the use of a necklace in Figure 
2. In the experiments, we standardized on the use of 6 
objects at a time. To bring the number of blobs to 36 the 
software also generates 30 non-object blobs. This was done 
because the P300 paradigm relies on the fact that the object 
being attended to flashes relatively infrequently. We picked 
36 because that is the g.tec BCI software’s default and 
many studies have picked a similar number as a good trade-
off between accuracy and speed [3, 7]. The non-object 
blobs can overlap with the object blobs and each other. This 
could have caused the P300 to be elicited incorrectly, but 
because the order of flashes is random, this shouldn’t lead 
to an overall misclassification. Our results suggest that 
there were no such misclassifications in our experiment.  

P300-Based BCI Control 
After the Java application that detects the blobs has created 
the object blobs and non-object blobs, it connects to the 
g.tec software. We customized the code in the g.tec 
software to intercept the control of the 2D grid speller and 

  

Figure 1:The standard speller system. Left:  The main screen 
of the g.tec P300-based speller. Within a 6x6 grid of 

characters, one character is currently flashing. Right:  A 
participant wearing the electrode cap with 8 EEG electrodes. 
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relay this over a UDP socket to the Java application. This 
adds a little extra latency to the system, but the application 
was run on a machine with a quad-core Intel i920 processor 
with an Nvidia GeForce 275 graphics card and 6GB of 
DDR3 memory. The use of a high-end machine meant that 
the CPU load was very low and the applications ran at 
75Hz. An end-to-end latency of less than 100ms in the 
display system is, in any case, implicitly compensated for in 
the offline training of the EEG classifier as long as jitter is 
kept very low.  

EXPERIMENT DESIGN 
We performed an experiment to assess the effectiveness of 
the P300-based BCI multi-touch system (MTS). The main 
aim was to demonstrate the effectiveness of the new 
system. We examined the success rate of selections and 
compared this to the success rate on the standard speller 
system (SSS). Twenty participants took part: 11 male and 9 
female (age range 21-54 years). Most were staff or students 
at University College London. They were not compensated 
for taking part. We used a within-subjects design, which 
allowed us to both compare success rates on MTS with the 
previous literature and also compare each participant’s 
performance on the MTS and SSS. 

Overall Procedure 
Each participant was introduced to the equipment and given 
an information sheet. After consenting to take part, the 
participant was fitted with the electrode cap and electrodes 
and the signal from each electrode was checked. 
Participants were not constrained. Filters in the g.tec 
software can cope with minor artifacts caused by eye and 
head movements. Each participant performed a series of 12 
selection tasks in both MTS and SSS. Half the participants 
first used SSS, whilst the other half first used MTS. 
Overall, the experiment lasted an hour per participant.  

Standard Speller System (SSS) Procedure 
The participant is seated 1m in front of the SSS screen (see 
Figure 1).  The participant is instructed to look at the 
character A and count the flashes. Each of the 36 characters 
on the screen is flashed 16 times in a random order. This is 
repeated for characters B-F. The recorded data is analyzed 
offline using the LDA to create an EEG classifier. The 
offline analysis takes less than one minute. The SSS screen 
is restarted using this classifier. The participant is then 
asked to spell four words: CAT, DOG, DV8, and FLY by 
keeping a running mental count of target character flashes. 
Each of the 36 characters is flashed 8 times in a random 
order. Between each word there is a pause, and they are 
only told the word immediately before attempting to spell 
it. They receive feedback after each character is spelt.  

Different numbers of flashes were used for training (16) 
and the actual selection task (8) in both the SSS and MTS. 
This is because previous tests showed that 16 flashes are 
needed in training to provide sufficient data to generate a 
classifier but that 8 flashes are enough to give sufficient 
discrimination from a set of trained classifiers. 

Multi-Touch System (MTS) Procedure 
The participant stands in front of the touch-table, see Figure 
2. Six objects are placed on the table. The participant is 
instructed, by the experimenter gesturing towards and 
naming, to look at one of the objects and count the number 
of times the area of light under it flashes. Each of the 36 
blobs on the table is flashed 16 times in a random order. 
This is repeated for the other 5 objects. The recorded data is 
analyzed offline using the LDA to create an EEG classifier. 
The MTS system is restarted using this classifier. Six 
objects are placed on the table, and the experimenter names 
and gestures towards one. Each of the 36 blobs is flashed 8 
times in a random order. This is repeated for two other 
objects. Then the six objects are replaced by six more, and 
the process repeated another three times. They receive 
feedback after each selection: the blob chosen by the 
classifier is highlighted. 

RESULTS 
In both the SSS and MTS, each selection is a choice of 36 
potential targets. In both the SSS and MTS cases, the 
participant’s success rate is a score out of 12. No 
participant, in either condition, scored less than 9 out of 12 
(75% success). The mean success score was 11.55 for SSS 
and 11.85 for MTS. A two-tailed t-Test was carried out to 
compare the conditions (20 SSS versus 20 MTS), but no 
statistical difference was found. Given that the mean 
success rates are higher, this is good evidence that the MTS 
performs well. There was no impact of the order of the two 
conditions suggesting there was no learning effect.  

We can also compare the overall success rates, to other 
recent studies. A common way of examining the success 
rates is to split the classification accuracy into bands as 
shown in Table 1. We compare our results with those of 
Edlinger et al. [3] where 38 subjects performed a spelling 

 

 

 

 

 

 

 

 

 

Figure 3: The image-processing pipeline. Top Left: Raw 
background image from camera showing the underside of the 

table. Top Right: Cropped and rectified image with four 
objects. Bottom: After background removal, thresholding 

and filtering, four connected components (blobs) are detected 
and labeled. 
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task using the same g.tec speller with 15 flashes per 
character. The results are very promising with 100% of our 
MTS sessions in the 80-100% success rate band, compared 
to 76.3% for their study. The SSS also scores highly. 
Further studies would be required to isolate whether this is 
just due to the participant sample or some aspect of our 
system. However, we suspect that a key difference may be 
that we ran the experiment on a very fast multi-processor 
PC so that the 300ms delay in the brain response was 
precisely measured by the software. In addition, Edlinger et 
al. [3] used 15 flashes, whereas we used 8, thus fatigue may 
have been a factor in their study. 

CONCLUSION 
BCI offers new opportunities for HCI. The design of targets 
and flash patterns for the P300-based BCI has been a topic 
of major concern in the study of BCIs. It is only one type of 
BCI paradigm, but it shows a lot of promise as its bit-rate is 
one of the highest amongst BCIs [9]. This short paper 
demonstrates that it is possible to use a P300-based BCI to 
indicate interest in real objects.  

There are several avenues for future research. We could use 
more sophisticated computer vision techniques to recognize 
and label target objects in more general environments. The 
size and shape of the cues are important and this would be 
an excellent topic for a follow-on study. It is worth noting 
that the P300-based BCI works well compared to the 
reference speller task. This may be due to the form of the 
interface (e.g. being relatively wide screen, or using quite 
large areas of light) which thus suggests there could be 
potential implications for the design of other P300-based 
BCI systems.  
 
 
 

There are several direct applications for this new technique 
such as allowing “locked-in” persons to interact with real 
objects rather than a screen. For example, in a meeting, real 
objects could be indicated rather than having the person 
spell the names of objects. Furthermore, the work hints at a 
future scenario where real environments could be 
augmented so that the physical objects could act as their 
own interfaces. In a smart home, a projector or array of 
lights could highlight objects to be used with the BCI. For 
more general users, the main contribution is that this is the 
first demonstration that does not use the standard speller or 
a simple graphic icon interface. Thus, as was highlighted as 
an important need in [6], this work opens up the space of 
opportunities for BCI. 
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Classification 
Accuracy 

(%) 

Edlinger et 
al (2009) 

Percentage 
of sessions 

SSS 

Percentage 
of sessions 

MTS 

Percentage 
of sessions 

100 55.3 70.0 90.0 

80-100 76.3 95.0 100.0 

60-79 10.6 5.0 0.0 

40-59 7.9 0.0 0.0 

20-39 2.6 0.0 0.0 

0-19 2.6 0.0 0.0 

Average 
accuracy of 
all subjects 

82 96 99 

Table 1 Comparison of SSS and MTS with the results of 
Edlinger et al. [3]. 
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