
Share: A Programming Environment for Loosely Bound
Cooperation

Yannick Assogba
MIT Media Lab

20 Ames Street, Cambridge MA, USA
yannick@media.mit.edu

Judith Donath
Harvard University Berkman Center

23 Everett Street, Cambridge, MA, USA
jdonath@cyber.law.harvard.edu

ABSTRACT
We introduce a programming environment entitled Share
that is designed to encourage loosely bound cooperation
between individuals within communities of practice
through the sharing of code. Loosely bound cooperation
refers to the opportunity community members have to assist
and share resources with one another while maintaining
their autonomy and independent practice. We contrast this
model with forms of collaboration that enable large
numbers of distributed individuals to collaborate on large
scale works where they are guided by a shared vision of
what they are collectively trying to achieve. We
hypothesize that providing fine-grained, publicly visible
attribution of code sharing activity within a community can
provide socially motivated encouragement for code sharing.
We present an overview of the design of our tool and the
objectives that guided its design and a discussion of a
small-scale deployment of our prototype among members
of a particular community of practice.

Author Keywords
Community, Cooperation, Collaboration ,Programming,
Open Source, Visualization, Social Software, Computer
Supported Cooperative Work

ACM Classification Keywords
H.5.3. Group and Organization Interfaces

General Terms
Human Factors

INTRODUCTION
Communities mediated by networked technology present
opportunities for greater interplay between the individual
and socio-contextual aspects of creative endeavor. Systems
(both their social and technical components) such as
Wikipedia, the development model of open source software
such as GNU/Linux, and social computing experiments
such as NASA Clickworkers [26] or the ESP game [13] are

but a few examples of how the work of individuals
collaborating at immense scale is synthesized to produce
something greater than the sum of its parts. However for
the most part these projects and many other ones like them
are ones in which participants have a shared idea of what
they are trying to achieve. Be it an encyclopedia or an
operating system there is a shared goal that all participants
are working towards. We seek to look at the design of
systems that allow individuals, in this case programmers, to
pursue independent goals yet still be able to help each other
along the way. We refer to this form of collaboration as
loosely bound cooperation.

BACKGROUND
Booch and Brown define a collaborative development
environment (CDE) as a “virtual space wherein all the
stakeholders of a project – even if distributed by time or
distance – may negotiate, brainstorm, discuss, share
knowledge, and generally labor together to carry out some
task” [16]. This definition highlights the focus present in
the collaborative development literature on collaboration
organized along the axis of a single project or shared task.
We see similar opportunities for collaboration, oriented not
around shared goals, but rather shared resources within
online communities.
In the social computing literature, Benkler [15] surveys
various examples of distributed collaboration, two core
examples he discusses are Wikipedia and the development
of GNU/Linux. As in the description of collaboration given
above, participants in these systems are bound together by a
shared vision of what they are trying to achieve. Though
they may have different reasons for participating, the goal
of what they are working on, while co-created, is singular.
To contrast, an example of a system that is constructed
from more individualistic goals is delicious.com [3]. Rather
than store web bookmarks locally on your computer,
delicious.com allows you to store your bookmarks on their
servers thus allowing you to access them from any
computer with internet access. This goal is an individually
oriented one — a user wants better access to their
bookmarks. However in the context of a network of users,
delicious.com is able to leverage this self-motivated
behavior to provide added value for all users of the service.
By allowing users to tag their bookmarks and by making
them publicly searchable, delicious.com effectively
provides a human filter on the larger internet. The public

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04...$10.00.

CHI 2010: Sharing Content and Searches April 10–15, 2010, Atlanta, GA, USA

961

mailto:yannick@media.mit.edu
mailto:yannick@media.mit.edu
mailto:yannick@media.mit.edu
mailto:yannick@media.mit.edu

nature of the bookmarks allows one to discover other users
who are interested in similar web resources and see what
else they are looking at. Wash & Rader [33] describe this
extra value as a side effect of the individually motivated
action to save bookmarks to a central server. In this system,
users are not explicitly collaborating with each other, they
are pursuing their own goals, however the service creates a
form of cooperation between users.
The challenge we observe in the sphere of software
development is that of how to support collaboration in the
context of these new forms of radically distributed, often
do-it-yourself, web-based communities. What does a CDE
look like for individuals working on distinct projects?
What are the factors that would encourage developers
working on distinct projects to cooperate? If they are no
longer trying to coordinate activity around a single project,
what benefits may they gain from collaborating in the first
place?

Loosely Bound Cooperation
We believe that collaboration within these web-based
communities can be supported within a framework of what
we term loosely bound cooperation. We hope to
encapsulate in this framework the much weaker ties
between members of the community (as compared to
members of a typical software development team), as well
the diversity of goals present among members of the
community. We define loosely bound cooperation as “a
form of collaboration, often indirect, among members of a
community that leaves them free to pursue their distinct
individual goals, yet enables them to help each other along
the way”. Characteristics of loosely bound cooperation
include:

• Participants do not have particular obligations (social nor
contractual) to each other.

• Participants have distinct goals from each other (in the
software example they are working on separate projects).
Loosely bound cooperation does not disrupt their ability
to pursue these goals

• Cooperation is often indirect and emerges primarily from
artifacts produced out of the goals of the participants. We
do not exclude more direct forms of assistance but rather
emphasize a continuum of cooperative behavior that
range from the very disconnected to the more engaged.

• Participants are members of a community of practice.
Their shared practice provides the context for
cooperation to take place and suggests artifacts that may
be commonly useful to cooperators.

We already see examples of loosely bound cooperation
between software developers when we consider snippet
sharing sites such as gist.github.com [5] or DZone Snippets
[4]. These sites allow programmers to post code snippets
online and share them with others. They allow individuals
to simply put useful bits of code ‘out there’ to be found by

others who may in turn find them useful. There is very little
binding ‘collaborators’ using DZone. Programmers also
cooperate with each other on forums and question &
answer sites such as StackOverflow [11]. Although these
individuals do not share projects, by answering each others
questions they do cooperate with each other. StackOverflow
has built an elaborate reputation and reward system of
points and badges that keep users engaged in the
community. This problem of motivation is one that we
think is particularly important in the context of loosely
bound cooperation. What makes individuals with little in
common willing to help each other? How can we design
systems that reward this kind of behavior?
We believe that visualizations of community activity
targeted at the community in question can play a role in
motivating participation. Hill et al [25] introduce the
notion of visible computational wear that allows digital
artifacts to reveal their interaction and suggest that this
‘wear’ can help “mediate coordination and cooperation” by
showing co-workers information on their use of the artifact.
Erickson and Kellogg [18] extend this work to larger social
systems with their notion of socially translucent systems
that support visibility, awareness and accountability. Gilbert
and Karahalios [21] also suggest that visualization can play
a role in rewarding community production in open source
software projects.

DESIGN PROPOSAL
We propose a novel programming environment geared
towards supporting loosely bound cooperation between
programmers within communities of practice [34]; our
prototype is initially targeted at programmers using the
Processing programming language [32], a language geared
towards multimedia artists, designers and others interested
in using code as a central part of their creative practice.

We chose Processing because we feel that the domain of
computational art and design would be ideal for our
exploration, as artists have strong individual goals, yet
share a common toolset. The Processing community also
has a rich history of cooperation and open working practice.
and was designed early on to take advantage of web
communities [32].

The primary method of cooperation that our tool supports is
the sharing of code. Our tool shares all the code written in it
with all members of the community as well as tracks its
reuse, providing fine-grained attribution of where code
came from as well as publicly visualizing the network of
links created from the patterns of re-appropriation. In
summary the system provides:

• Automatic Code Sharing. As code is written it is
automatically distributed to all other users of the system.

• Tracking Copy & Paste. As code is re-appropriated its
movement is tracked making it possible to see where any
of the content in a particular file came from.

CHI 2010: Sharing Content and Searches April 10–15, 2010, Atlanta, GA, USA

962

• Visualizing Relationships. The environment provides an
interactive visualization of the entities within the system
(users and code artifacts) and the relationships between
them.

• Explicit reference and linking of artifacts. The system
provides a means of making explicit references to other
users or code artifacts for relationships that are not
captured by the automatic copy-paste tracking (e.g. those
indicating inspiration where no code actually moves).

Our hypothesis is that we can leverage public display of
attribution to provide reward for, and motivate to
participation in, code-sharing based cooperation between
individuals who are in pursuit of independent goals.

RELATED WORK
Jazz [17] is an example CDE that provides support for ad-
hoc teams organized around particular projects. It provides
features such as chat, screen sharing, and status indicators
to aid communication between software developers as well
as awareness of team member activities and changes to
source code. Jazz and other CDE’s such as Microsoft Visual
Studio Team System [8], Netbeans (with the optional
collaboration module) [9] as well as studies on distributed
software development such as that by Gutwin, Penner and
Schneider [22] all focus on software ‘teams’ and ‘groups’
whose members have a strong need to maintain close
awareness of what each other is doing. In the space we are
exploring there are no teams and the usefulness of features
such as traditional instant messaging can be called into
question as the participants do not have direct dependent
relationships and are under no obligation to help each other.
Scratch [29] is a programming language and community
geared towards children that provides encouragement to
share one’s work. Youth are able to upload and download
projects to and from the central Scratch website. When
youth create projects based on those of others, the website
automatically marks these projects as remixes, thus
providing attribution for the original author. Monroy-
Hernández [30] describes the ways in which the design of
the Scratch website encourages participation in communal
exchange. The Scratch website encourages uploading work
to the site by highlighting works across various popularity
metrics. Placing these projects prominently on the home
page provides great reward for projects that successfully
engage with other members of the community. However
Scratch only allows for a project to have one ‘ancestor’,
there is no easy way for an individual to incorporate code
from multiple projects and if they are able to do so the
system does not recognize the multiple contributions to a
project.
GitHub [6] is a commercial code hosting service built upon
the open source distributed version control system Git. It
adds a social component to the code hosting facility
provided by its competitors and provides the ability to track
the alternate versions of a project that the sites users may

create. However, the result of incorporating a number of
components from distinct projects into a new work
generally does not create a new ‘version’ of an existing
project, and the process provided by GitHub does not
support this aspect of code sharing practice that may be
going on within a community of programmers. Similar to
our comparison with Scratch, we seek to examine a design
that enables code reuse at a finer level of granularity than
that of an entire project.
OpenProcessing.org [10], is a community website for users
of the Processing language to upload their works (along
with source code) and put them on display for other visitors
of the site. However unlike our work no explicit link is
maintained to those who borrow code; unless the
downloader leaves a comment, an uploader does not know
if their code gets reused and likely cannot see how it was
re-appropriated. Additionally we feel that OpenProcessing
and other sites like it are set up more as exhibition spaces as
opposed to workspaces; we will address this point further in
our description of design goals below.
Our work is also informed by empirical research on the
motivations of open source programmers. Among others,
Ghosh [20], Lakhani & Wolf [27], Raymond [31], and
Lerner & Tirole [28] have investigated individuals’
motivations for participating in open source software. They
have all identified socially oriented factors — i.e. factors
that emerge from the context of working with others — that
encourage participation. Importantly for us they all report
that reputation or peer recognition for ones’ contributions
are strong motivating factors in encouraging participation.
Share tries to capitalize on these factors to encourage code
sharing among developers working on distinct projects.

SYSTEM DESCRIPTION

Design Goals
Our design goals revolved around the following
considerations:

• Creating a good shared workspace vs. creating a good
exhibition space. The environment and its mores should
feel like a comfortable place for work in progress as
opposed to being a place just for finished work.

• Non-disruptiveness. As much as possible we want to
allow individuals, should they so desire, to work
completely disengaged from the concept of working
within a community — yet still be contributing to it. At
the same time we want to provide a smooth continuum
for increased engagement with the community. Thus
interaction in Share is asynchronous and individuals are
able to work online or offline.

• Non-competitiveness. Given our use of attribution as a
reward mechanism, there exists a chance for the
environment to become an overly competitive one, which
we feel would be contrary to our goal of supporting
cooperation and our desire to create a comfortable

CHI 2010: Sharing Content and Searches April 10–15, 2010, Atlanta, GA, USA

963

workspace. We have mainly tried to focus on the more
subtle (less competition oriented) displays of reputation.

System Architecture
Share is built using a client-server architecture with almost
all the computation happening on the client. The server acts
to provide authentication for clients and as a database
through which documents and data files associated with
projects are transferred. The client, a desktop application,
is where the user does all of their programming.

Share Server
Share’s server component consists of two main parts: a
CouchDB database and a small ruby web application that
controls authentication when pushing documents to the
server. Apache CouchDB [2] is an HTTP accessible,
schemaless, document-oriented database; CouchDB's
document model fit well with the nature of our underlying
data, and its web friendly architecture makes it amenable to
easy integration with the client side components.

Share Client

File Browser
The file browser (fig. 1) is the first thing a user sees after
logging in to Share and is their entry way to other parts of
the software. The file browser allows users to look through
other users’ projects, and shows a description panel that
displays metadata such as how big the project is (in files
and lines of code), how many incoming links (files from
which it has borrowed code from) and outgoing links (files
to which it has contributed code) the project has, how many
times it has been bookmarked as well as a screenshot from
the application if the user has uploaded one. We also parse
the comment at the top of the main file in a project to use as
a description.

Editor
The editor is at the core of Share’s functionality, it provides
a means to edit code and also the mechanism to track the
movement of code. Our code editor records attributes on
each character of text such as which user wrote it, what
document it originated from and in the case of code that
was pasted in, the time and date that it was pasted. All
documents and projects are given universally unique

identifiers (UUIDs), the UUIDs are what the client uses to
refer to the documents allowing them to be renamed freely
without affecting our ability to track their content. The text
is written to an XML based format that lets us persist and
restore the attribution information. This representation
allows very fine-grained representation (down to the
character level) of where code came from. This allows the
editor to perform code highlighting based on the human
source of the code, as in fig. 2 where the background color
of the text is determined by which user it came from (text
with a clear background was created by the owner of this
document). Upon startup colors are assigned to all users in
the system and persist throughout a coding session, that
color will consistently be used to represent that user, his
projects and his code throughout the software. This source-
highlighting mode can be toggled on and off. Another
advantage of tracking reuse at this level of granularity is
that it enables users to also see what was changed in a
copied snippet. This could potentially be useful to
beginners trying to understand which parts of code to tweak
to make it work in a different context.

Explicit References
Share provides the ability to make explicit references to
other projects. This is done using a special syntax directly
in the file. This consists of using the @saw keyword and
then giving a username/project pair to link to.

Figure 1. Share File Browser

Figure 2. Share Code Editor in Source Highlighting Mode.
Background color of text indicates which user it was

borrowed from. Uncolored text is original to this document.

CHI 2010: Sharing Content and Searches April 10–15, 2010, Atlanta, GA, USA

964

Search, Comments & Bookmarks
Share provides fulltext search of all the code in the
repository through the use of the Lucene fulltext search
engine [7] as well as a per-project comment thread
accessible from the code editor. Share also allows
individuals to bookmark projects that they find interesting.
A more complete description of these and other subsystems
can be found in [14].

The Network Browser
The network browser is an interactive visualization of the
relationships between the projects and users Share. It acts
as a form of visible (yet not explicitly ranked) reputation, as
one can easily tell whether a project has contributed code to
a lot of other projects. Given any project or user, a spanning
tree is built of that entities’ relationships in the overall
network graph. The process of creating the tree from the
more general graph potentially eliminates some of the links
within the graph, however we feel that this representation
more clearly shows the elements that are most closely
related to the selected node. There are two visualizations
provided by the network browser, the first is a radial tree
view (fig. 3) where the selected entity is placed in the
center, the algorithm used is a partial implementation of
Yee et al’s [35] layout algorithm for animated radial graphs
that we ported from Jeffrey Heer’s “prefuse” visualization
library [24]. In this visualization successive rings display
entities directly related to those on the inner ring.
Arrowheads point in the direction that code traveled and the
thickness of the arrow is proportional to the relative
proportion of borrowed code in the borrowing project. We
use color to relate project icons to the icons of their creator.
The two are always rendered in the same color and this is

the same color used in the source highlighting view in the
code editor. As the user clicks on nodes they are smoothly
animated to the center and more distant nodes move closer
to the center and additional nodes added, allowing the user
to progressively move closer and closer to the leaves of the
original tree (and also freeing us from trying to fit the entire
graph onto the screen at once). This visualization is also
aimed at supporting discovery of previously unknown
resources. As you can see in fig. 3 there are a lot of nodes
displayed that are only indirectly related to the selected
(centered) node, while we did not implement any filtering
to control the number of nodes shown in the visualization
this would become necessary as more projects were created
in the tool. One could use any number of metrics to filter
out incidentally related nodes, including recency of edits,
code similarity, popularity metrics and so on.

Users can toggle a second visualization that is much
simpler than the radial tree view (fig. 4) which simply
answers the question “what projects are contributing to and
borrowing from this project”. It thus shows elements that
are only one step away from the selected node.

Synchronization
The synchronization subsystem is responsible for pushing
local changes from the client and pulling new and updated
documents from the server, it runs automatically every five
minutes and only transfers new code (and project files) to
and from the server.

Runtime
Share ships with the Processing compiler and runtime,
however it is architected in such a manner that it can easily
support other programming languages. When a user is
running one of their own projects, our preprocessor for
Processing code also adds a little bit of code to the project
to enable the user to press a single key that will take a
screenshot of their project and upload it to the server, this is
used to generate the preview images shown in the file
browser. For such a visually oriented community as the one
we were targeting it was an important part of helping users
explore each others work.

Figure 3. Share Network Browser in Radial Tree Mode. The
circular icons represent users while the rectangular icons

represent projects.

Figure 4. Share Network Browser in Simplified Mode

CHI 2010: Sharing Content and Searches April 10–15, 2010, Atlanta, GA, USA

965

Security Concerns
One of the issues in a system like Share is that when a user
runs another’s sketch they are essentially running code
from a stranger on the Internet. All programs run from
Share are run in a sandbox managed by the Java Virtual
Machine (JVM), the security policy we set when launching
projects restricts them to a much safer set of operations.

Limitations
The chief limitations of the prototype as currently
implemented revolve around scalability of the visualization
and possibly the ability of users to find useful source code
as the repository of projects grows in size. Future work
would seek to investigate how these parts of the application
could scale, however we are confident that solutions can be
found. Programmers successfully find code on the Internet
everyday, indeed it was this experience of ‘programming-
by-google’ that partially inspired the authors to create this
project. In addition to the full text search of the entire
repository that we currently provide, research in code
recommender systems such Codebroker [19] suggest that
recommender technology could be used to both provide
better search results and in pruning nodes in the
visualization to favor displaying more semantically related
projects. With regards to the visualization, there is plenty of
visualization research into the display of large network
graphs (e.g. Vizster [23]).

DEPLOYMENT AND USER FEEDBACK.
In order to evaluate our design we hosted a themed design/
programming competition that was entirely electronically
mediated. The purpose of the competition structure and
theme was to scaffold the creation a small scale community
of practice that would provide the loose associations and
shared interests we would expect to see in larger
communities of practice but do so in a manner that makes a
shorter timeframe analysis practical. Participants in our
competition were asked to create works ‘Inspired by Pong’,
this was the only constraint given with respect to creative
work. They were allowed a two week period over which to
work on their submissions. We felt that the two week period
would be sufficiently long to make apparent the
asynchronous nature of interaction we designed Share to
support. Of the sixteen participants that participated in the
competition, eleven submitted pieces for consideration by
the judges (participants could create as many pieces as they
wanted during the competition but could only select one to
submit for judging).
While prizes (two iPod Touches and two Arduino kits) were
offered as incentive for extended participation and while a
competition was used to recruit and encourage participants
to actively use our software, a proviso was made that would
award smaller prizes ($25 Amazon gift cards) to
participants whose code was used in winning submissions.
This meant that a person borrowing ones’ code simply
increases ones’ chances of winning something, and was
very much in keeping with the cooperative spirit of Share.

At the end of the competition, participants were asked to fill
out a questionnaire on various aspects of their experience;
eleven of the sixteen participants completed the survey. The
investigator also interacted with the participants throughout
the course of the event. The results discussed in this section
come from two main sources, the metadata on code-sharing
collected by the software (data from all sixteen participants)
and the participants’ responses to the questionnaire (from
the eleven respondents).

Recruitment and Participant Demographics
Individuals from the Processing community were recruited
over the Internet and invited to volunteer for the study. This
does imply some self-selection bias with regards to
willingness to share code, however we do not feel that this
is a problem as we explicitly situate our work within the
sharing economy, that is to say we are not contrasting it
with proprietary models but rather aim to support those
already participating in sharing economies. The participants
were physically distributed across different parts of the
world, including Europe, Asia and the USA. An Internet
Relay Chat (IRC) server was set up for the participants to
use, however due to time zone differences, there were never
that many people in the chat room at once. The chat room
served as a source of live technical support, both for
programming techniques and issues with the software itself.
Participants ranged across all levels of experience from
newcomers to programming to long term experts; and
included hobbyists, students in art, design and architecture
as well as professional designers and artists.

Usage data
65 projects were produced by the 16 participants over the
two week period, 12 of these were removed from this
analysis because they were duplicate projects created by
their owners to overcome implementation bugs in the
software (during the course of the competition some files
became corrupted and were no longer editable by their
owners, they were thus duplicated), thus 53 projects were
used in this analysis, with each user creating an average of
3.31 projects (standard deviation=2.84, median=3). These
projects include the main submissions the participants were
working on as well as many small sketches to test a
particular idea or piece of code. We include these ‘side’
sketches because we feel that they are an important part of
the process of coding, and a valuable piece of what users
get to see when looking at each others work. Our
presentation of this data is mainly to indicate the level of
activity in Share over the two-week period. Across all 53
projects the average percent of borrowed code in each
project was 13.9%. With 32.1% of projects having at least
one incoming link (borrowed code from another user’s
project) and 60.4% having at least one incoming or
outgoing link (having borrowed from or contributed to
another user’s project). As shown in fig. 5, the distribution
of borrowed code follows a power law distribution.

CHI 2010: Sharing Content and Searches April 10–15, 2010, Atlanta, GA, USA

966

Figure 6 shows the distribution of code borrowing activity
across the 16 participants. The data suggests that a number
of participants (P08, P12 and P16) made a deliberate
strategy of ‘remixing’ others work, or at the very least
found a very good base from which to continue their
projects.
We can also look at the data from projects that have at least
one incoming or outgoing link (the connected components
of the network). These measures do overestimate the
‘usefulness’ of the code base (in terms of the amount code
that a user was directly able to re-use). 32 of the 53 projects
have at least one incoming or outgoing link and form 5
connected components in the overall graph. The average
percentage of code borrowed from other users among these
projects is 21.0%, the distribution is the same as the one in
fig. 5 except that is has a shorter ‘tail’.

This data indicates that there was reasonable usage of the
features provided by Share and is in line with what we
would expect; given that the projects are independent we
would not actually expect to see large percentages of
borrowed code in most cases.

In terms of what kind of code was reused, we observed the
code for constructing the basic mechanics of a Pong game
spread the most among projects; these include things like
collision detection and physics simulations or the code used
to control the ‘paddles’ common to pong games. Also a
number of techniques particular to small sets of projects
would originate from a particular user and spread to a few
others, this included calculations for geometry and
movement on circular paths (a number of project put a
‘circular’ spin on pong).

Survey Responses
Our hypothesis was that automatic tracking and attribution
of code would lower barriers to sharing code and provide
encouragement to share code with others. The data and
quotes in this section come from the eleven responses to the
survey that we received.
Our survey focused on a number of different aspects of
participants’ experience using Share. These include:
whether Share reduces individuals barriers to openly

sharing code, the value of the automatic attribution,
whether individuals felt more productive or creative when
using Share, the usefulness of the visualization in
discovering code and understanding community activity,
and whether the feature set of Share was disruptive to
users’ regular programming practice.
We asked users how they felt about the automatic
attribution provided by Share (i.e. tracking reuse of their
own code), all respondents responded positively to this
feature, saying

“When releasing code, you don’t need really know if it has
its own life beyond your project. It’s stimulating to see it
travel around.”
“I love the code tracking and highlighting so that I can
follow the chain back to see how my implementation of
something I copied can improve.”

“It helps that it does the attribution for you, so you don’t
have to remember which snippet came from where, or be
constantly documenting it, which can interrupt the flow of
coding.”
“It is nice to be able to trace ideas and code. The @saw tag
was useful for me, because it allowed me to write notes for
myself so that I would remember where I saw an idea and
how they implemented it.”
“It is a good way to learn about other people through what
they do. It is also a good way to see how helpful/useful the
stuff you produce is.”
“It’s a good thing and makes you feel like you are not
working on your own but collaborating with many people
without the sense of “being stealing” someone else’s stuff”

This is exactly the response we were hoping for; there was
value in simply seeing your contributions being used by
others; individuals are encouraged to contribute code to the
commons because they can see if it takes on a life beyond
its original use. There is also pragmatic value in seeing
what had been done with it as one can keep an eye out for
improvements. The display of attribution also increases the
sense of community and reduces anxiety around issues of
‘stealing’ other peoples’ code. We also see that it supports

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!" #!" $!" %!" &!" '!"

!"!!# !"!!# !"!!# !"!!# !"!!$# !"!%&#

'(")'#

)("&'#

!"&'#

)"&*#

+$"*$#

,("%,#

',"'!#

(+"!%#

$"(&#

,$"!%#

!"!!#

'!"!!#

+!"!!#

(!"!!#

$!"!!#

*!"!!#

,!"!!#

%!"!!#

)!"!!#

&!"!!#

'!!"!!#

-!'# -!+# -!(# -!$# -!*# -!,# -!%# -!)# -!&# -'!# -''# -'+# -'(# -'$# -'*# -',#

Figure 5. Percentage of code borrowed from other users across
all 53 projects.

Figure 6. Percentage of borrowed code across all 16
participants.

CHI 2010: Sharing Content and Searches April 10–15, 2010, Atlanta, GA, USA

967

something people are doing already, i.e. documenting their
sources when they borrow code.
We asked users directly whether they felt that the
attribution features of Share lowered their barriers to
sharing code, their responses to this question on a 5 point
Likert scale are displayed in fig 7.
In addition to being able to see where their code went, users
reported that Share reduced their barriers to sharing code
because the continual and automatic uploading of their code
reduced the anxiety burden of making their work visible to
others. We had asked users about what prevented them
from sharing code prior to using our tool and one common
response was a feeling that their code was not ‘good
enough’ to be shown to other people. Share takes this
burden out of the users hands and a number of users were
grateful for this.

With regard to using the visualization to track the
movement of other peoples’ code, 6 out of 11 respondents
said they found it useful. The main use of the visualization
with regard to other peoples’ code was seeing what code
was popular within the community and thus warranted
further investigation, respondents also found watching the
changes in the network visualization gratifying as a sign of
the presence of other users thus increasing the sense of
community among participants. Positive responses include:

“Well, when I saw that a lot of people were borrowing from
a particular [project], I’d check out that person’s code,
because there must be something cool in there if that many
people are using it.”
“Yes, it made me concentrate on this traveling code. I was
more interested by sketches that had connections over
sketches that hadn’t [...] it’s something I liked, to see day
after day, the network building itself.”
“I liked the visualization as a way to gauge overall
productivity and activity of the community but I think it was
too abstract to tell me much about code.”
The negative responses to this question were not very
detailed, with respondents saying that they simply did not
use the feature that much. Users suggested that the
visualization could have been more helpful if it more
quickly allowed for an individual to get more information
about that project other than what it was connected to. The
end of the last comment quoted above does point to an
opportunity to encode more information about a project in
the visualization itself, possibly through parameterizing the
design of the icons representing projects with project
related features. Something we did not see was the use of
the network visualization to discover previously unknown
resources, this is not too surprising due to the small number
of participants. There was little that could not be discovered
by browsing through the lists in the file browser. We
suspect that the utility of the network visualization in this
regard would increase as the size of the community using
Share grows.

We asked participants whether they felt that the feature set
in our tool made them more productive (able to do things
more quickly or more creative (encouraged them to do
things they otherwise may not have thought of), responses
are shown in fig 8 and 9 respectively.

When asked to elaborate on how it resulted in increased
productivity or creativity, we received the expected
response that simply having a repository of code to draw
from helped people get started more quickly, or otherwise
more quickly solve their own problems. Participants also
enjoyed seeing how others approached the same problem
and found some inspiration for their own work. While we
are unsure if this last point is more an effect of the
competition’s pong constraint, making it more likely to see
something that gives you an idea; we are confident that it
would be similarly useful in less constrained settings.
Participant elaborations included:
“I’m a very beginner and Share let me have a look at other
people’s work and learn from them and their codes”

“Looking at what others are doing was a good starting
point for generating ideas.”

“We were some[times] to be in front of the same problems
(dealing with collisions, or mouse control for example) I
found other paths helpful to deal with these.”
“I feel my abilities expanded when I could view everybody’s
code. I could see other people’s solutions to problems
arising in my own coding.”
“It opened a vast space of ideas, of different approaches,
that questioned mine. Seeing some others build their sketch
day after day was very interesting too, changes they made,
it was like seeing the living process of a creative idea.”
However at least one respondent found the visibility of the
other projects somewhat overwhelming, this individual was
a bit intimidated by some of the work he saw being
produced, saying,

“Though the wealth of code and projects is certainly
inspiring, it’s also a little overwhelming. Seeing everyone
else’s ideas made mine seem pale in comparison. Then
again, I’ve been in a bit of a creative slump lately.”

This last comment underscores the importance of creating a
comfortable space for participants at all levels of
experience, and is one of the reasons we avoid explicit
ranking systems and leader-boards as we feel those type of
reputation systems would alienate less experienced or less
confident users.
Another user did mention the issue of signal vs. noise in
browsing through the repository, saying “the number of
‘dead’ sketches made it hard to fully discover the real
diamonds”. This is a common issue in systems providing
access to ‘user generated content’ but solutions to this kind
of problem (such as tagging systems) continue to be
developed in numerous online spaces and is certainly

CHI 2010: Sharing Content and Searches April 10–15, 2010, Atlanta, GA, USA

968

something that warrants further consideration in future
iterations.
One of our goals in the design of Share was to minimize the
disruption to regular work practice, when we asked
participants whether they were able to work
“unencumbered by the notion of working within a
community”, users generally felt that they were able to
maintain their independence (fig. 10).

DISCUSSION
Our initial hypothesis is supported by the feedback we got
from our users on how they felt about our automatic
attribution as well as that indicated in fig 7. While our
results share much in common with the literature around
projects like Scratch, the environment we design for is
different in a number of ways that provide alternate
avenues for exploration. Firstly, in Scratch or on
OpenProcessing.org the work is the primary thing that is
being shared. That is to say, the goal of a user uploading a
scratch project is not necessarily to just share code but
primarily to share their creative output. We believe our
design is more code centric; rather than an being exhibition
space to display finished work, Share is an open workspace
where unfinished code and ideas are open to all. In Share
our continuous and automatic uploading of code took the
burden of ‘sharing’, and thus selecting what is worthy, off
the shoulders of the users and aided in making the system
amenable to works in progress. We believe the difference
between exhibition space and workspace is important to
future design of collaborative tools for web based
communities. Secondly the mechanisms available to
provide reward differ slightly, while we do not have a front
page through which we can leverage popularity to reward
contribution, our user feedback suggests that we are still
able to reveal enough of the social history of interaction
around a particular users work to provide them value. We
believe that the design and evaluation of less overtly
competitive reputation systems is also an interesting area
for future research and in longer term deployments of our
system.

Our feature set also supports the existing programmer
practice of documenting one’s sources. In a similar manner
to TrackBack [12] on blogging platforms or document
repositories such as arXiv [1], our tool announces to
content producers how and where their content is reused.
As far as we know there is no existing trackback like
system for programmers who share code and we believe
that our tool makes an argument (and suggests some
techniques) for creating a set of online services and
programming conventions that would make it easier to
create trackback for programmer communities, even
without a specialized tool like Share in communities where
switching costs would be prohibitive.
Supporting better documentation of sources also relieves
some of the issues around the feeling that one is ‘stealing’
code; we feel that negotiating these issues around
ownership and the relationship between the contributor and
the borrower are important functions that tools for
distributed web based cooperation can provide.

CONCLUSION
This paper has articulated the practice of loosely bound
cooperation, in which individuals are able to pursue
distinct, independent goals yet assist each other along the
way and has described the design of a novel programming
environment that facilitates this form of cooperation among
members of a community of practice. The automatic
tracking and public display of attribution provided by our
tool contributes to positive feelings among the participants,
as they feel recognized for their creative work and
community contribution. Users also feel more at ease with
reusing the work of others without feeling like they are
stealing, and most of our users affirmed that it reduced their
barriers to publicly sharing code. Individuals were also able
to track downstream changes to contributions they had
made and confirmed the pragmatic usefulness of doing so
as well as the encouragement provided by seeing something
they had created take on a life beyond their own projects.
Share also alleviates some of the anxiety associated with

!"#$%&'()*&#++

*&#++

,+-".+#)*&#++)%$#)/-01&#++

/-01&#++

!"#$%&'()/-01&#++

2 3 4 5 6 7

!"#$%&'()*&#++

*&#++

,+-".+#)*&#++)%$#)/-01&#++

/-01&#++

!"#$%&'()/-01&#++

2 3 4 5 6 7 8

!"#$%&'()*&#++

*&#++

,+-".+#)*&#++)%$#)/-01&#++

/-01&#++

!"#$%&'()/-01&#++

2 3 4 5 6 7

!"#$%&'()*&#++

*&#++

,+-".+#)*&#++)%$#)/-01&#++

/-01&#++

!"#$%&'()/-01&#++

2 3 4 5 6 7

Figure 7. Responses to the question "The attribution methods
provided by Share lower my barriers for sharing code"

Figure 8. Responses to the question "The features provided by
Share increased my ability (made it easier) to address the

task”

Figure 9. Responses to the question "The features provided by
Share increased my creativity in addressing the task at hand."

Figure 10. Participant responses to the question "When
working in Share, I feel I am able to work independently and
unencumbered by the notion of working within a community"

CHI 2010: Sharing Content and Searches April 10–15, 2010, Atlanta, GA, USA

969

‘publishing’ one’s work as it is constantly uploading works
in progress for all users of the system.

REFERENCES
1. arXiv.org e-Print archive. http://arxiv.org/.
2. Apache CouchDB: The CouchDB Project. 2008. http://

couchdb.apache.org/.
3. Delicious. http://delicious.com/.
4. DZone Snippets: Store, sort and share source code, with

tag goodness. http://snippets.dzone.com/.
5. Gist - GitHub. http://gist.github.com/.
6. GitHub. http://github.com/.
7. Apache Lucene - Overview. 2006. http://

lucene.apache.org/java/docs/.
8. Microsoft Team System. http://msdn.microsoft.com/en-

us/teamsystem/default.aspx.
9. NetBeans. http://netbeans.org/.
10.OpenProcessing - Share Your Sketches! http://

www.openprocessing.org/.
11.Stack Overflow. http://stackoverflow.com/.
12.TrackBack Technical Specification. http://

www.sixapart.com/pronet/docs/trackback_spec.
13.von Ahn, L. and Dabbish, L. Labeling images with a

computer game. Proc. 2004 Conference on Human
factors in computing systems, ACM Press (2004), 326,
319.

14.Assogba, Y. Creative Networks: Socio-Technical Tools
for Loosely Bound Cooperation. 2009. http://
smg.media.mit.edu/papers/yannick/
yannick_assogba_thesis_final.pdf.

15.Benkler, Y. The Wealth of Networks. Yale University
Press, 2007.

16.Booch, G. and Brown, A.W. Collaborative development
environments. Advances in Computers 59, (2003), 2–29.

17.Cheng, L.-T., Hupfer, S., et al., “Jazz: a collaborative
application development environment,” ACM SIGPLAN
Conference on Object Oriented Programming Systems
Languages and Applications, pp. 102-103, Anaheim,
CA, USA, 2003.

18.Erickson, T. and Kellogg, W.A. Social translucence: an
approach to designing systems that support social
processes. ACM Transactions on Computer-Human
Interaction (2000), 59–83.

19.Fischer, G. and Ye, Y. Personalizing Delivered
Information in a Software Reuse Environment. In Proc.
8th International Conference on User Modeling, (2001),
178--187.

20.Ghosh, R.A. Understanding free software developers:
Findings from the FLOSS study. Perspectives on free
and open source software, (2005), 23–45.

21.Gilbert, E. and Karahalios, K. CodeSaw: A social
visualization of distributed software development.
Lecture Notes in Computer Science 4663, (2007), 303.

22.Gutwin, C., Penner, R., and Schneider, K. Group
awareness in distributed software development. Proc.
2004 ACM conference on Computer supported
cooperative work, (2004), 72–81.

23.Heer, J. and Boyd, D. Vizster: Visualizing online social
networks. Proc. 2005 IEEE Symposium on Information
Visualization, (2005), 33–40.

24.Heer, J., Card, S.K., and Landay, J.A. Prefuse: a toolkit
for interactive information visualization. Proc. SIGCHI
conference on Human factors in computing systems,
(2005), 421–430.

25.Hill, W.C., Hollan, J.D., Wroblewski, D., and
McCandless, T. Edit wear and read wear. Proc. SIGCHI
conference on Human factors in computing systems,
(1992), 3–9.

26.Kanefsky, B., Barlow, N.G., and Gulick, V.C. Can
Distributed Volunteers Accomplish Massive Data
Analysis Tasks. Lunar and Planetary Science XXXII,
paper 1272, (2001).

27.Lakhani, K. and Wolf, R. Why Hackers Do What They
Do: Understanding Motivation and Effort in Free/Open
Source Software Projects. Perspectives in Free and
Open Source Software, MIT Press, Cambridge, MA,
(2005).

28.Lerner, J. and Tirole, J. The scope of open source
licensing. Journal of Law, Economics, and Organization
21, 1 (2005), 20–56.

29.Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman,
B., and Resnick, M. Scratch: a Sneak Preview. Proc.
Second International Conference on Creating,
Connecting and Collaborating through Computing,
2004.

30.Monroy-Hernández, A. ScratchR : a platform for
sharing user-generated programmable media. 2007.
http://dspace.mit.edu/handle/1721.1/42977?show=full.

31.Raymond, E.S. The Cathedral and the Bazaar. O'Reilly
Associates, Inc., 1999.

32.Reas, C. and Fry, B. Processing: programming for the
media arts. AI & Society 20, 4 (2006), 526-538.

33.Wash, R. and Rader, E. Public bookmarks and private
benefits: An analysis of incentives in social computing.
Proc. American Society for Information Science and
Technology 44, 1 (2007).

34.Wenger, E. Communities of practice. http://
www.ewenger.com/theory/index.htm.

35.Yee, K. Fisher, D. Dhamija, R. and Hearst, M. Animated
Exploration of Dynamic Graphs with Radial Layout.
Proc. IEEE Symposium on Information Visualization
2001, IEEE Computer Society (2001), 43.

CHI 2010: Sharing Content and Searches April 10–15, 2010, Atlanta, GA, USA

970

http://arxiv.org
http://arxiv.org
http://couchdb.apache.org
http://couchdb.apache.org
http://couchdb.apache.org
http://couchdb.apache.org
http://delicious.com
http://delicious.com
http://snippets.dzone.com
http://snippets.dzone.com
http://gist.github.com
http://gist.github.com
http://github.com
http://github.com
http://lucene.apache.org/java/docs/
http://lucene.apache.org/java/docs/
http://lucene.apache.org/java/docs/
http://lucene.apache.org/java/docs/
http://msdn.microsoft.com/en-us/teamsystem/default.aspx
http://msdn.microsoft.com/en-us/teamsystem/default.aspx
http://msdn.microsoft.com/en-us/teamsystem/default.aspx
http://msdn.microsoft.com/en-us/teamsystem/default.aspx
http://netbeans.org
http://netbeans.org
http://www.openprocessing.org
http://www.openprocessing.org
http://www.openprocessing.org
http://www.openprocessing.org
http://stackoverflow.com
http://stackoverflow.com
http://www.sixapart.com/pronet/docs/trackback_spec
http://www.sixapart.com/pronet/docs/trackback_spec
http://www.sixapart.com/pronet/docs/trackback_spec
http://www.sixapart.com/pronet/docs/trackback_spec
http://smg.media.mit.edu/papers/yannick/yannick_assogba_thesis_final.pdf
http://smg.media.mit.edu/papers/yannick/yannick_assogba_thesis_final.pdf
http://smg.media.mit.edu/papers/yannick/yannick_assogba_thesis_final.pdf
http://smg.media.mit.edu/papers/yannick/yannick_assogba_thesis_final.pdf
http://smg.media.mit.edu/papers/yannick/yannick_assogba_thesis_final.pdf
http://smg.media.mit.edu/papers/yannick/yannick_assogba_thesis_final.pdf
http://dspace.mit.edu/handle/1721.1/42977?show=full
http://dspace.mit.edu/handle/1721.1/42977?show=full
http://www.ewenger.com/theory/index.htm
http://www.ewenger.com/theory/index.htm
http://www.ewenger.com/theory/index.htm
http://www.ewenger.com/theory/index.htm

